일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- 치환
- algebraic
- Admissions
- DENOMINATOR
- solution
- a-level
- test
- College
- GCSE
- factors
- differential
- division
- triangle
- Order
- factor
- 적분
- equation
- 제도
- Weierstrass
- 학년
- 바이어슈트라스
- 교육
- t-치환
- Oxford
- integral
- fractions
- mathematics
- Partial
- 영국
- Maths
- Today
- Total
Cambridge Maths Academy
P2 §1.7 Review exercise for chapter 1 본문
P2 §1.7 Review exercise for chapter 1
Cambridge Maths Academy 2022. 6. 28. 21:35Pure mathematics Year 2
Table of contents
- Edexcel P2 Review exercise 1 Q1-10
1. Edexcel P2 Review exercise 1 Q1-10
Question 1. (E/P) Prove by contradiction that there are infinitely many prime numbers. [4 marks](Relevant section: P2 §1.1 Proof by contradiction.)
(Edexcel 2017 Specifications, P2 Review exercise 1 Q1.)
Solution.
Question 2. (E/P) Prove that the equation $x^2 - 2=0$ has no rational solutions. You may assume that if $n^2$ is an even integer then $n$ is also an even integer. [4 marks](Relevant section: P2 §1.1 Proof by contradiction.)
(Edexcel 2017 Specifications, P2 Review exercise 1 Q2.)
Solution.
Question 3. (E) Express $$ \frac{4x}{x^2 - 2x - 3} + \frac{1}{x^2 + x} $$ as a single fraction in its simplest form. [4 marks](Relevant section: P2 §1.2 Algebraic fractions.)
(Edexcel 2017 Specifications, P2 Review exercise 1 Q3.)
Solution.
Question 4. (P) $$ \textrm f(x) = 1 - \frac{ 3 }{ x+2 } + \frac{ 3 }{ (x+2)^2 }, \qquad x \ne -2. $$(a) Show that $$ \textrm f(x) = \frac{ x^2 + x + 1 }{ (x+2)^2}, \qquad x \ne -2 $$
(a) Show that $ x^2 + x + 1 > 0 $ for all values of $x$, $x \ne -2$.
(c) Show that $ \textrm f(x) > 0 $ for all values of $x$, $x \ne -2$.
(Relevant section: P2 §1.2 Algebraic fractions.)
(Edexcel 2017 Specifications, P2 Review exercise 1 Q4.)
Solution.
(b) By completing the square, $$ \begin{align} x^2 + x + 1 &= \left( x + \frac12 \right)^2 - \frac14 + 1 \\ &= \left( x + \frac12 \right)^2 + \frac34 \\ &\ge \frac34 \\ &> 0. \qquad \square \end{align} $$
(c) This gives $$ \begin{align} \textrm f(x) = \frac{ x^2 + x + 1 }{ (x+2)^2 } = \frac{ \left( x + \frac12 \right)^2 + \frac34 }{ (x+2)^2 } \end{align} $$ For $x \ne -2$, since both the numerator and denominator are positive, $ \textrm f(x) > 0. \qquad \square$
Question 5. (E) Show that $$ \frac{ 2x - 1 }{ (x-1) (2x-3) } $$ can be written in the form $$ \frac{ A }{ x-1 } + \frac{ B }{ 2x - 3 }, $$ where $A$ and $B$ are constants to be found. [3 marks](Relevant section: P2 §1.3 Partial fractions.)
(Edexcel 2017 Specifications, P2 Review exercise 1 Q5.)
Solution.
Question 6. (E) Given that $$ \frac{ 3x + 7 }{ (x+1) (x+2) (x+3) } \equiv \frac{ P }{ x+1 } + \frac{ Q }{ x+2 } + \frac{ R }{ x+3 }, $$ where $P,Q$ and $R$ are constants, find the values of $P,Q$ and $R$. [4 marks](Relevant section: P2 §1.3 Partial fractions.)
(Edexcel 2017 Specifications, P2 Review exercise 1 Q6.)
Solution.
Question 7. (E) $$ \textrm f(x) = \frac{ 2 }{ (2-x) (1+x)^2 }, \qquad x \ne -1, \quad x \ne 2. $$ Find the values of $A,B$ and $C$ such that $$ \textrm f(x) = \frac{ A }{ 2-x } + \frac{ B }{ 1+x } + \frac{ C }{ (1+x)^2 } $$ [4 marks](Relevant section: P2 §1.4 Repeated factors.)
(Edexcel 2017 Specifications, P2 Review exercise 1 Q7.)
Solution.
Question 8. $$ \frac{ 14x^2 + 13x + 2 }{ (x+1) (2x+1)^2 } \equiv \frac{ A }{ x+1 } + \frac{ B }{ 2x+1 } + \frac{ C }{ (2x+1)^2 }. $$ Find the values of the constants $A,B$ and $C$.(Relevant section: P2 §1.4 Repeated factors.)
(Edexcel 2017 Specifications, P2 Review exercise 1 Q8.)
Solution.
Question 9. (E) Given that $$ \frac{ 3x^2 + 6x -2 }{ x^2 + 4 } \equiv d + \frac{ ex + f }{ x^2 + 4 }, $$ find the values of $d,e$ and $f$. [4 marks](Relevant section: P2 §1.5 Algebraic division.)
(Edexcel 2017 Specifications, P2 Review exercise 1 Q9.)
Solution.
$$ \begin{align} 3x^2 + 6x - 2 &\equiv 3 \left( x^2 + 4 \right) - 12 + 6x - 2 \\ &\equiv 3 \left( x^2 + 4 \right) + 6x - 14 \\ \\ \Leftrightarrow \qquad \frac{ 3x^2 + 6x -2 }{ x^2 + 4 } &\equiv 3 + \frac{ 6x - 14 }{ x^2 + 4 } \end{align} $$
Thus, $$ \begin{align} d = 3, \qquad e = 6, \qquad f = -14 \qquad \checkmark \end{align} $$
Question 10. (E) $$ \textrm p(x) = \frac{ 9 - 3x - 12x^2 }{ (1-x)(1+2x) }. $$ Show that $ \textrm p(x) $ can be written in the form $$ A + \frac{ B }{ 1-x } + \frac{ C }{ 1+2x }, $$ where $A,B$ and $C$ are constants to be found. [3 marks](Relevant sections: P2 §1.3 Partial fractions and §1.5 Algebraic division.)
(Edexcel 2017 Specifications, P2 Review exercise 1 Q10.)
Solution.
(i) Step 1: Algebraic division.
The denominator reads:$$ \begin{align} (1-x)(1+2x) = 1 + x - 2x^2 \end{align} $$ and, by algebraic division, we find: $$ \begin{align} && 9 - 3x - 12x^2 &= 6 \left( -2x^2 + x + 1 \right) - 6x - 6 + 9 - 3x \\ &&&= 6 \left( 1 + x - 2x^2 \right) - 9x + 3 \\ \\ &\Leftrightarrow & \frac{ 9 - 3x - 12x^2 }{ 1 + x - 2x^2 } &\equiv 6 + \frac{ -9x + 3 }{ 1 + x - 2x^2 } \\ \\ &\Leftrightarrow & \frac{ 9 - 3x - 12x^2 }{ (1-x)(1+2x) } &\equiv 6 + \frac{ -9x + 3 }{ (1-x)(1+2x) } \end{align} $$
(ii) Step 2: Partial fractions.
Let $$ \begin{align} \frac{ -9x + 3 }{ (1-x)(1+2x) } &\equiv \frac{ B }{ 1-x } + \frac{ C }{ 1+2x } \\ &\equiv \frac{ B(1+2x) + C(1-x) }{ (1-x)(1+2x) } \end{align} $$ Compare the numerators on both sides: $$ B(1+2x) + C(1-x) \equiv -9x + 3 $$ By the method of substitution: $$ \begin{align} \textrm{(i)}&& x &= 1 &&\Rightarrow& 3 B &= -9+3 = -6 \\ &&&&&\Rightarrow& B &= -2 \\ \\ \textrm{(ii)}&& x &= -\frac12 &&\Rightarrow& \frac32 C &= \frac{9}{2}+3=\frac{15}{2} \\ &&&&&\Rightarrow& C &= 5 \end{align} $$ and we obtain: $$ \begin{align} \Rightarrow \qquad \frac{ -9x + 3 }{ (1-x)(1+2x) } &\equiv - \frac{ 2 }{ 1-x } + \frac{ 5 }{ 1+2x } \end{align} $$
Finally, we find: $$ \begin{align} \Rightarrow \qquad \frac{ 9 - 3x - 12x^2 }{ (1-x)(1+2x) } &\equiv 6 + \frac{ -9x + 3 }{ (1-x)(1+2x) } \\ &\equiv 6 - \frac{ 2 }{ 1-x } + \frac{ 5 }{ 1+2x } \qquad \checkmark \end{align} $$ and thus: $$ \begin{align} A &= 6 \\ B &= -2 \\ C &= 5 \end{align} $$
'A-level Mathematics > Pure Mathematics 2' 카테고리의 다른 글
P2 §2. Functions and graphs (0) | 2022.06.28 |
---|---|
P2 §1.6 Mixed exercise for chapter 1 (0) | 2022.06.28 |
P2 §1.5 Algebraic division (0) | 2022.06.28 |
P2 §1.4 Repeated factors (0) | 2022.06.28 |
P2 §1.3 Partial fractions (0) | 2022.06.28 |