Cambridge Maths Academy

P2 §1.4 Repeated factors 본문

A-level Mathematics/Pure Mathematics 2

P2 §1.4 Repeated factors

Cambridge Maths Academy 2022. 6. 28. 21:35
반응형

Pure mathematics Year 2

Table of contents

  1. Partial fractions revisited
  2. Partial fractions with repeated factors
  3. Examples
  4. Edexcel P2 Ch1 Exercise 1E

 

The main task of this section is to understand partial fractions with repeated factors. In order to do so, we need to consider and understand some general form of fractions.

1. Partial fractions revisited

In the previous section, P2 §1.3 Partial fractions, we studies partial fractions when there are two or three linear factors in the denominator.

1.1. Two linear factors

For example:

Ax+2+Bx1=A(x1)+B(x+2)(x+2)(x1)=(A+B)x+(A+2B)(x+2)(x1)=LinearQuadratic

1.2. Three linear factors

For example:

Ax+2+Bx1+Cx3=A(x1)(x3)+B(x+2)(x3)+C(x+2)(x1)(x+2)(x1)(x3)=A(x24x+3)+B(x2x6)+C(x2+x2)(x+2)(x1)(x3)=(A+B+C)x2+(4AB+C)x+(3A6B2C)(x+2)(x1)(x3)=QuadraticCubic

1.3. One quadratic factor and one linear factor

We may generalise this to the case where we have one quadratic factor and one linear factor.

 

A first attempt: Ax2+x+1+Bx1=A(x1)+B(x2+x+1)(x2+x+1)(x1)=Bx2+(A+B)x+(BA)(x2+x+1)(x1) However, there are three coefficients in the numerator expressed in terms of two variables A and B. This could be problematic as we may not be able to find A and B that satisfy three conditions. (In the language of simultaneous equations, we need the same number of variables as the number of equations/conditions.)

 

Our second (and correct) attempt: Ax+Bx2+x+1+Cx1=(Ax+B)(x1)+C(x2+x+1)(x2+x+1)(x1)=(A+B+C)x2+(A+B+C)x+(B+C)(x2+x+1)(x1) where the number of equations and that of variables are equal. The final result is of the form Ax+BQuadratic+CLinear=QuadraticQuadratic×Linear=QuadraticCubic

 

1.4. A general case

We may generalise this further to: Polynomial of order nPolynomial of order n+1=Polynomial of order p1Polynomial of order p+Polynomial of order q1Polynomial of order q where p+q=n+1.

  • The polynomial of order n has n+1 coefficients.
  • The polynomial of order p1 has p coefficients.
  • The polynomial of order q1 has q coefficients.
  • Thus, the number of coefficients on the LHS, n+1, matches the number of variables on the RHS, p+q.

An example: 11x47x3+5x2+x3(x3+x2+x+1)(x2+x+1)=Ax2+Bx+Cx3+x2+x+1+Dx+Ex2+x+1

반응형

2. Partial fractions with repeated factors

We will study partial fractions with repeated factors with an example.

 

Step 1. For partial fractions with repeated factors, it is essentially the case where we have a quadratic factor and a linear factor in the denominator. For example, 2x+9(x5)(x+3)2=2x+9(x5)(x2+6x+9)=Ax5+Bx+Cx2+6x+9=A(x+3)2+(Bx+C)(x5)(x5)(x2+6x+9)

By the method of substitution, we find: (i)x=38(3B+C)=2(3)+9=3(ii)x=564A=2(5)+9=19(iii)x=09A5C=9 We see that:

  • Unlike linear factors, even with the method of substitution, the coefficients appear together and we need to solve them as simultaneous equations.
  • The numerator on the RHS suggests only two convenient choices for x. For the third one, we may choose any convenient number, usually x=0,±1 and so on.

This gives

A=1964C=9(A1)5=95(4564)=8164B=13(38C)=13(2464+8164)=1964 and thus, for partial fractions, we obtain : 2x+9(x5)(x+3)2=1964(x5)19x+8164(x+3)2

 

Step 2. We can simplify the second term with the repeated factor as follows. 19x+8164(x+3)2=19(x+33)+8164(x+3)2=19(x+3)+2464(x+3)2=1964(x+3)+38(x+3)2 and thus the partial fractions now read: 2x+9(x5)(x+3)2=1964(x5)1964(x+3)38(x+3)2

 

Step 3. In general, for partial fractions with repeated factors, we find: ax2+bx+c(x5)(x+3)2=Ax5+B(x+3)+C(x+3)2

A generalisation

If more factors are repeated, we can go through the same steps and find a similar result. For example, 2x4+9x7(x5)2(x+3)3=Ax+b(x5)2+Cx2+dx+e(x+3)3=A(x5)+5a+b(x5)2+C(x+3)2+D(x+3)+E(x+3)3=Ax5+B(x5)2+Cx+3+Dx+3)2+E(x+3)3

반응형

3. Examples

Example. Show that 11x2+14x+5(x+1)2(2x+1) can be written in the form Ax+1+B(x+1)2+C2x+1, where A,B and C are constants to be found.

 

(Edexcel 2017 Specifications, P2 Ch1 Example 10.)

 

Solution.

더보기
Let 11x2+14x+5(x+1)2(2x+1)Ax+1+B(x+1)2+C2x+1A(x+1)(2x+1)+B(2x+1)+C(x+1)2(x+1)2(2x+1) By the method of substitution: (i)x=1B=11(1)2+14(1)+5=1114+5=2B=2(ii)x=1214C=11(12)2+14(12)+5=1147+5=34C=3(iii)x=0A+B+C=5A=5BC=5+23=4 Hence, we find: A=4,B=2,C=3 and the partial fractions read: 11x2+14x+5(x+1)2(2x+1)4x+12(x+1)2+32x+1

 

반응형

4. Edexcel P2 Ch1 Exercise 1E

Question 1. (E) f(x)=3x2+x+1x2(x+1),x0,x1. Given that f(x) can be expressed in the form Ax+Bx2+Cx+1, find the values of A,B and C. [4 marks]

 

(Edexcel 2017 Specifications, P2 Ch1 Exercise 1E Q1.)

 

Solution.

더보기
Let f(x)=3x2+x+1x2(x+1)Ax+Bx2+Cx+1Ax(x+1)+B(x+1)+Cx2x2(x+1) By the method of substitution: (i)x=0B=1(ii)x=1C=3(1)2+(1)+1=3(iii)x=12A+2B+C=52A=52BC=523=0A=0 Hence, we find: A=0,B=1,C=3 and the partial fractions read: f(x)=3x2+x+1x2(x+1)1x2+3x+1

 

반응형
Question 2. (E) g(x)=x210x5x2(x+1),x1,x1. Find the values of the constants D,E and F such that g(x)=Dx+1+E(x+1)2+Fx1. [4 marks]

 

(Edexcel 2017 Specifications, P2 Ch1 Exercise 1E Q2.)

 

Solution.

더보기
Let g(x)=x210x5x2(x+1)Dx+1+E(x+1)2+Fx1D(x+1)(x1)+E(x1)+F(x+1)2x2(x+1) By the method of substitution: (i)x=12E=(1)210(1)5=1+105=4E=2(ii)x=14F=1105=16F=4(iii)x=0DE+F=5D=5+EF=52+4=3D=3 Hence, we find: D=3,E=2,F=4 and the partial fractions read: g(x)=x210x5x2(x+1)3x+12(x+1)24x1

 

반응형
Question 3. (E) Given that, for x<0, 2x2+2x18x(x3)2Px+Qx3+R(x3)2, where P,Q and R are constants, find the values of P,Q and R. [4 marks]

 

(Edexcel 2017 Specifications, P2 Ch1 Exercise 1E Q3.)

 

Solution.

더보기
We have 2x2+2x18x(x3)2Px+Qx3+R(x3)2P(x3)2+Qx(x3)+Rxx(x3)2 By the method of substitution: (i)x=09P=18P=2(ii)x=33R=2(3)2+2(3)18=6R=2(iii)x=14P2Q+R=2+218=142Q=144PR=14+82=8Q=4 Hence, we find: P=2,Q=4,R=2 and the partial fractions read: 2x2+2x18x(x3)22x+4x3+2(x3)2

 

반응형
Question 4. (E) Show that 5x22x1x3x2 can be written in the form Cx+Dx2+Ex1, where C,D and E are constants to be found. [4 marks]

 

(Edexcel 2017 Specifications, P2 Ch1 Exercise 1E Q4.)

 

Solution.

더보기
We factorise the denominator first. x3x2=x2(x1) Let 5x22x1x3x25x22x1x2(x1)Cx+Dx2+Ex1Cx(x1)+D(x1)+Ex2x2(x1) By the method of substitution: (i)x=0D=1D=1(ii)x=1E=521=2(iii)x=12C2D+E=5(1)22(1)1=5+21=62C=6+2DE=6+22=6C=3 Hence, we find: C=3,D=1,E=2 and the partial fractions read: 5x22x1x3x25x22x1x2(x1)3x+1x2+2x1

 

반응형
Question 5. (E) p(x)=2x(x+2)2,x2. Find the values of the constants A and B such that p(x)=Ax+2+B(x+2)2 [4 marks]

 

(Edexcel 2017 Specifications, P2 Ch1 Exercise 1E Q5.)

 

Solution.

더보기
Let p(x)=2x(x+2)2Ax+2+B(x+2)2A(x+2)+B(x+2)2 By the method of substitution: (i)x=2B=4(ii)x=02A+B=0A=B2=2 [Note: Here, the method of equating coefficients is equally convenient as it gives A=2 and 2A+B=0.]

 

Hence, we find: A=2,B=4 and the partial fractions read: p(x)=2x(x+2)22x+24(x+2)2

 

Aside. An alternative way: p(x)=2x(x+2)2=2(x+22)(x+2)2=2(x+2)4(x+2)2=2x+24(x+2)2

 

반응형
Question 6. (E) 10x210x+17(2x+1)(x3)2A2x+1+Bx3+C(x3)2,x>3. Find the values of the constants A,B and C. [4 marks]

 

(Edexcel 2017 Specifications, P2 Ch1 Exercise 1E Q6.)

 

Solution.

더보기
We have 10x210x+17(2x+1)(x3)2A2x+1+Bx3+C(x3)2A(x3)2+B(2x+1)(x3)+C(2x+1)(2x+1)(x3)2 By the method of substitution: (i)x=12(123)2A=10(12)210(12)+17494A=52+5+17=492A=2(ii)x=37C=10(3)210(3)+17=9030+17=77C=11(iii)x=09A3B+C=173B=179AC=171811=12B=4 Hence, we find: A=2,B=4,C=11 and the partial fractions read: 10x210x+17(2x+1)(x3)222x+1+4x3+11(x3)2

 

반응형
Question 7. (E) Show that 39x2+2x+59(x+5)(3x1)2 can be written in the form Ax+5+B3x1+C(3x1)2, where A,B and C are constants to be found. [4 marks]

 

(Edexcel 2017 Specifications, P2 Ch1 Exercise 1E Q7.)

 

Solution.

더보기
Let 39x2+2x+59(x+5)(3x1)2Ax+5+B3x1+C(3x1)2A(3x1)2+B(x+5)(3x1)+C(x+5)(x+5)(3x1)2 By the method of substitution: (i)x=5162A=39(5)2+2(5)+59=39×25+49=102428A=210A=22=4(ii)x=13(13+5)C=39(13)2+2(13)+59163C=133+23+59=64C=12(iii)x=0A5B+5C=595B=59A5C=59460=5B=1 Hence, we find: A=4,B=1,C=12 and the partial fractions read: 39x2+2x+59(x+5)(3x1)24x+5+13x1+12(3x1)2

 

반응형
Question 8. (P) Express the following as partial fractions: (a)4x+1x2+10x+25(b)6x2x+24x34x2+x

 

(Edexcel 2017 Specifications, P2 Ch1 Exercise 1E Q8.)

 

Solution.

더보기
(a) We factorise the denominator first. x2+10x+25=(x+5)2 Let 4x+1x2+10x+25=4x+1(x+5)2Ax+5+B(x+5)2A(x+5)+B(x+5)2 By the method of substitution: (i)x=5B=19(ii)x=05A+B=15A=1B=20A=4 [Note: Here, the method of equating coefficients is equally convenient as it gives A=4 and 5A+B=1.]

 

Hence, we find: A=4,B=19 and the partial fractions read: 4x+1x2+10x+25=4x+1(x+5)24x+519(x+5)2

 

Aside. An alternative way: 4x+1x2+10x+25=4x+1(x+5)2=4(x+55)+1(x+5)2=4(x+5)19(x+5)2=4x+519(x+5)2

 

(b) We factorise the denominator first. 4x34x2+x=x(4x24x+1)=x(2x1)2 Let 6x2x+24x34x2+x=6x2x+2x(2x1)2Ax+B2x1+C(2x1)2A(2x1)2+Bx(2x1)+Cxx(2x1)2 By the method of substitution: (i)x=0A=2(ii)x=12C2=6(12)2(12)+2=3212+2=3C=6(ii)x=1A+B+C=61+2=7B=7AC=726=1 Hence, we find: A=2,B=1,C=6 and the partial fractions read: 6x2x+24x34x2+x=6x2x+2x(2x1)22x12x1+6(2x1)2

 

 

 

 

반응형

'A-level Mathematics > Pure Mathematics 2' 카테고리의 다른 글

P2 §1.6 Mixed exercise for chapter 1  (0) 2022.06.28
P2 §1.5 Algebraic division  (0) 2022.06.28
P2 §1.3 Partial fractions  (0) 2022.06.28
P2 §1.2 Algebraic fractions  (0) 2022.06.28
P2 §1.1 Proof by contradiction  (0) 2022.06.28