Cambridge Maths Academy

P2 §1.5 Algebraic division 본문

A-level Mathematics/Pure Mathematics 2

P2 §1.5 Algebraic division

Cambridge Maths Academy 2022. 6. 28. 21:35
반응형

Pure mathematics Year 2

Table of contents

  1. Algebraic division
  2. Examples
  3. Edexcel P2 Ch1 Exercise 1F
  4. Improper fractions in partial fractions
  5. Edexcel P2 Ch1 Exercise 1G

1. Algebraic division

An improper algebraic fraction is one whose numerator has a degree equal to or larger than the denominator.

  • The degree of a polynomial is the largest exponent in the expression. For example, x3+5x9x3+5x9 has degree 3.
  • x2+5x+8x2x2+5x+8x2 is an example where the degree of the numerator is greater than the degree of the denominator.
  • x3+5x9x34x2+7x3x3+5x9x34x2+7x3 is an example where the degrees of the numerator and denominator are equal.

 

An improper fraction must be converted to a mixed fraction before we can express it in partial fractions. We can use algebraic division: F(x)=(Quotient)×(Divisor)+(Remainder)F(x)=Q(x)D(x)+R(x)F(x)D(x)Q(x)+R(x)D(x)(a mixed fraction)

  • Our first example above can be written as: x2+5x+8(x+7)(x2)+22x2+5x+8x2x+7+22x2
  • The second example above can be written as: x3+5x91×(x34x2+7x3)+(4x22x6)2(x+1)(2x3)x3+5x9x34x2+7x31+2(x+1)(2x3)x34x2+7x3
반응형

2. Examples

Example 1. By algebraic long division, or otherwise, show that x3+x27(Ax2+Bx+C)(x3)+D and that x3+x27x3Ax2+Bx+C+Dx3, where A,B,C and D are constants to be found.

 

(Edexcel 2017 Specifications, P2 Ch1 Examples 11 and 12.)

 

Solution.

더보기
By algebraic long division (see the YouTube clip below for more details),

x3+x27(x2+4x+12)(x3)+29x3+x27x3x2+4x+12+29x3 Hence, A=1B=4C=12D=29

 

반응형

 

Example 2. f(x)=x4+x3+x10x2+2x3 Show that f(x) can be written as Ax2+Bx+C+Dx+Ex2+2x3 and find the values of A,B,C,D and E.

 

(Edexcel 2017 Specifications, P2 Ch1 Example 13.)

 

Solution.

더보기
By algebraic long division (see the YouTube clip below for more details),

x4+x3+x10(x2x+5)(x2+2x3)+(12x+5)f(x)=x4+x3+x10x2+2x3x2x+5+12x+5x2+2x3 Hence, A=1B=1C=5D=12E=5

 

반응형

3. Edexcel P2 Ch1 Exercise 1F

Question 1. (E) x3+2x2+3x4x+1Ax2+Bx+C+Dx+1. Find the values of the constants A,B,C and D. [4 marks]

 

(Edexcel 2017 Specifications, P2 Ch1 Exercise 1F Q1.)

 

Solution.

더보기
By algebraic long division (see the YouTube clip below for more details),

x3+2x2+3x4(x2+x+2)(x+1)6x3+2x2+3x4x+1x2+x+2+6x+1 Hence, A=1B=1C=2D=6

 

반응형
Question 2. (E) Given that 2x3+3x24x+5x+3ax2+bx+c+dx+3, find the values of a,b,c and d. [4 marks]

 

(Edexcel 2017 Specifications, P2 Ch1 Exercise 1F Q2.)

 

Solution.

더보기
By algebraic long division (see the YouTube clip below for more details),

2x3+3x24x+5(2x23x+5)(x+3)102x3+3x24x+5x+32x23x+5+10x+3 Hence, a=2b=3c=5d=10

 

반응형
Question 3. (E) f(x)=x38x2 Show that f(x) can be written in the form px2+qx+r and find the values of p,q and r. [4 marks]

 

(Edexcel 2017 Specifications, P2 Ch1 Exercise 1F Q3.)

 

Solution.

더보기
By algebraic long division (see the YouTube clip below for more details),

x38(x2+2x+4)(x1)x38x2x2+2x+4 Hence, p=1q=2r=4

 

반응형
Question 4. (E) Given that 2x2+4x+5x21m+nx+px21, find the values of m,n and p. [4 marks]

 

(Edexcel 2017 Specifications, P2 Ch1 Exercise 1F Q4.)

 

Solution.

더보기
By algebraic long division (see the YouTube clip below for more details),

2x2+4x+52(x21)+4x+72x2+4x+5x212+4x+7x21 Hence, m=2n=4p=7

 

반응형
Question 5. (E) Find the values of the constants A,B,C and D in the following identity: 8x3+2x2+5(Ax+B)(2x2+2)+Cx+D [4 marks]

 

(Edexcel 2017 Specifications, P2 Ch1 Exercise 1F Q5.)

 

Solution.

더보기
By algebraic long division (see the YouTube clip below for more details),

8x3+2x2+5(4x+1)(2x2+2)8x+38x3+2x2+52x2+24x+1+8x+32x2+2 Hence, A=4B=1C=8D=3

 

반응형
Question 6. (E) 4x35x2+3x14x2+2x1Ax+B+Cx+Dx2+2x1. Find the values of the constants A,B,C and D. [4 marks]

 

(Edexcel 2017 Specifications, P2 Ch1 Exercise 1F Q6.)

 

Solution.

더보기
By algebraic long division (see the YouTube clip below for more details),

4x35x2+3x14(4x13)(x2+2x1)+33x274x35x2+3x14x2+2x14x13+33x27x2+2x1 Hence, A=4B=13C=33D=27

 

반응형
Question 7. (E) g(x)=x4+3x24x2+1 Show that g(x) can be written in the form px2+qx+r+sx+tx2+1 and find the values of p,q,r,s and t. [4 marks]

 

(Edexcel 2017 Specifications, P2 Ch1 Exercise 1F Q7.)

 

Solution.

더보기
By algebraic long division (see the YouTube clip below for more details),

x4+3x24(x2+2)(x2+1)6g(x)=x4+3x24x2+1x2+2+6x2+1 Hence, p=1q=0r=2s=0t=6

 

반응형
Question 8. (E) Given that 2x4+3x32x2+4x6x2+x2ax2+bx+c+dx+ex2+x2, find the values of a,b,c,d and e. [5 marks]

 

(Edexcel 2017 Specifications, P2 Ch1 Exercise 1F Q8.)

 

Solution.

더보기
By algebraic long division (see the YouTube clip below for more details),

2x4+3x32x2+4x6(2x2+x+1)(x2+x2)+5x42x4+3x32x2+4x6x2+x22x2+x+1+5x4x2+x2 Hence, a=2b=1c=1d=5e=4

 

반응형
Question 9. (E) Find the values of the constants A,B,C,D and E in the following identity: 3x44x38x2+16x2(Ax2+Bx+C)(x23)+Dx+E [5 marks]

 

(Edexcel 2017 Specifications, P2 Ch1 Exercise 1F Q9.)

 

Solution.

더보기
By algebraic long division (see the YouTube clip below for more details),

3x44x38x2+16x2(3x24x+1)(x23)+4x+13x44x38x2+16x2x233x24x+1+4x+1x23 Hence, A=3B=4C=1D=4E=1

 

반응형
Question 10. (E/P)

(a) Fully factorise the expression x41. [2 marks]

(b) Hence, or otherwise, write the algebraic fraction x41x+1 in the form (ax+b)(cx2+dx+e) and find the values of a,b,c,d and e. [4 marks]

 

(Edexcel 2017 Specifications, P2 Ch1 Exercise 1F Q10.)

 

Solution.

더보기

(a) We have: x41=(x2+1)(x21)=(x2+1)(x+1)(x1)

 

(b) This gives x41x+1=(x2+1)(x+1)(x1)x+1=(x1)(x2+1) so we find: A=1B=1C=1D=0E=1

 

반응형

4. Improper fractions in partial fractions

In order to express an improper algebraic fraction in partial fractions, we need to divide the numerator by the denominator first. Recall that an improper algebraic fraction is one where the degree of the numerator is greater than or equal to the degree of the denominator.

 

Example. Given that 3x23x2(x1)(x2)A+Bx1+Cx2, find the values of A,B and C.

 

(Edexcel 2017 Specifications, P2 Ch1 Example 14.)

 

Solution.

더보기

(i) Step 1: Algebraic division.

We note that (x1)(x2)=x23x+2. By algebraic long division (see the YouTube clip below for more details), 3x23x23(x23x+2+3x2)3x23(x23x+2)+6x83x23x2(x1)(x2)3+6x8(x1)(x2)

 

(ii) Step 2: Partial fractions.

Let 6x8(x1)(x2)Bx1+Cx2B(x2)+C(x1)(x1)(x2) Compare the numerators on both sides: B(x2)+C(x1)6x8 By the method of substitution: (i)x=1B=2B=2(ii)x=2C=128=4 and we obtain: 6x8(x1)(x2)2x1+4x2

 

Finally, we find: 3x23x2(x1)(x2)3+6x8(x1)(x2)3+2x1+4x2 and thus: A=3B=2C=4

 

반응형

5. Edexcel P2 Ch1 Exercise 1G

Question 1. (E) g(x)=x2+3x2(x1)(x2). Show that g(x) can be written in the form A+Bx1+Cx2 and find the values of the constants A,B and C. [4 marks]

 

(Edexcel 2017 Specifications, P2 Ch1 Exercise 1G Q1.)

 

Solution.

더보기

(i) Step 1: Algebraic division.

We note that (x1)(x2)=x23x+2. By algebraic long division (see the YouTube clip below for more details), x2+3x2(x23x+2+3x2)+3x2(x23x+2)+6x4x23x2(x1)(x2)1+6x4(x1)(x2)

 

(ii) Step 2: Partial fractions.

Let 6x4(x1)(x2)Bx1+Cx2B(x2)+C(x1)(x1)(x2) Compare the numerators on both sides: B(x2)+C(x1)6x4 By the method of substitution: (i)x=1B=2B=2(ii)x=2C=124=8 and we obtain: 6x4(x1)(x2)2x1+8x2

 

Finally, we find: 3x23x2(x1)(x2)1+6x4(x1)(x2)12x1+8x2 and thus: A=1B=2C=8

 

반응형
Question 2. (E) Given that x210(x2)(x+1)A+Bx2+Cx+1, find the values of the constants A,B and C. [4 marks]

 

(Edexcel 2017 Specifications, P2 Ch1 Exercise 1G Q2.)

 

Solution.

더보기

(i) Step 1: Algebraic division.

We note that (x2)(x+1)=x2x2. By algebraic long division (see the YouTube clip below for more details), x210(x2x2+x+2)10(x2x2)+x8x210(x2)(x+1)1+x8(x2)(x+1)

 

(ii) Step 2: Partial fractions.

Let x8(x2)(x+1)Bx2+Cx+1B(x+1)+C(x2)(x1)(x2) Compare the numerators on both sides: B(x+1)+C(x2)x8 By the method of substitution: (i)x=23B=6B=2(ii)x=13C=18=9C=3 and we obtain: x8(x2)(x+1)2x2+3x+1

 

Finally, we find: x210(x2)(x+1)1+x8(x2)(x+1)12x2+3x+1 and thus: A=1B=2C=3

 

반응형
Question 3. (E) Find the values of the constants A,B,C and D in the following identity: x3x2x3x(x1)Ax+B+Cx+Dx1 [5 marks]

 

(Edexcel 2017 Specifications, P2 Ch1 Exercise 1G Q3.)

 

Solution.

더보기

(i) Step 1: Algebraic division.

We note that x(x1)=x2x. By algebraic long division (see the YouTube clip below for more details), x3x2x3x(x2x)x3x3x2x3x(x1)x+x3x(x1)

 

(ii) Step 2: Partial fractions.

Let x3x(x1)Cx+Dx1C(x1)+Dxx(x1) Compare the numerators on both sides: C(x1)+Dxx3 By the method of substitution: (i)x=0C=3C=3(ii)x=1D=13=4 and we obtain: x3x(x1)3x4x1

 

Finally, we find: x3x2x3x(x1)x+x3x(x1)x+3x4x1 and thus: A=1B=0C=3D=4

 

반응형
Question 4. (E) Show that 3x34x2+19x+8x2+2x3 can be expressed in the form A+Bx+C(x1)+D(x+3), where A,B,C and D are constants to be found. [5 marks]

 

(Edexcel 2017 Specifications, P2 Ch1 Exercise 1G Q4.)

 

Solution.

더보기

(i) Step 1: Algebraic division.

By algebraic long division (see the YouTube clip below for more details), 3x34x2+19x+8(3x+2)(x2+2x3)+6x+143x34x2+19x+8x2+2x33x+2+6x+14x2+2x3

 

(ii) Step 2: Partial fractions.

Factorise the denominator first: x2+2x3=(x1)(x+3) Let 6x+14(x1)(x+3)Cx1+Dx+3C(x+3)+D(x1)(x1)(x+3) Compare the numerators on both sides: C(x+3)+D(x1)6x+14 By the method of substitution: (i)x=14C=6+14=20C=5(ii)x=34D=18+14=4D=1 and we obtain: 6x+14(x1)(x+3)5x1+1x+3

 

Finally, we find: 3x34x2+19x+8x2+2x323x+6x+14x2+2x323x+5x1+1x+3 and thus: A=2B=3C=5D=1

 

반응형
Question 5. (E) p(x)4x2+254x225 Show that p(x) can be written in the form A+B2x5+C2x+5, where A,B and C are constants to be found. [4 marks]

 

(Edexcel 2017 Specifications, P2 Ch1 Exercise 1G Q5.)

 

Solution.

더보기

(i) Step 1: Algebraic division.

By algebraic long division (see the YouTube clip below for more details), p(x)4x2+254x225(4x225)+504x2251+504x225

 

(ii) Step 2: Partial fractions.

Factorise the denominator first: 4x225=(2x5)(2x+5) Let 50(2x5)(2x+5)B2x5+C2x+5B(2x+5)+C(2x5)(2x5)(2x+5) Compare the numerators on both sides: B(2x+5)+C(2x5)50 By the method of substitution: (i)x=5210B=50B=5(ii)x=5210C=50C=5 and we obtain: 50(2x5)(2x+5)52x552x+5

 

Finally, we find: p(x)4x2+254x2251+504x2251+52x552x+5 and thus: A=1B=5C=5

 

반응형
Question 6. (E) Given that 2x21x2+2x+1A+Bx+1+C(x+1)2, find the values of the constants A,B and C. [4 marks]

 

(Edexcel 2017 Specifications, P2 Ch1 Exercise 1G Q6.)

 

Solution.

더보기

(i) Step 1: Algebraic division.

By algebraic long division (see the YouTube clip below for more details), 2x21x2+2x+12(x2+2x+12x1)1x2+2x+12(x2+2x+1)4x3x2+2x+12+4x3x2+2x+1

 

(ii) Step 2: Partial fractions.

Factorise the denominator first: x2+2x+1=(x+1)2 and this gives partial fractions with repeated factors. Let 4x3(x+1)2Bx+1+C(x+1)2B(x+1)+C(x+1)2 Compare the numerators on both sides: B(x+1)+C4x3 By equating coefficients: {B=4B+C=3{B=4C=1 and we obtain: 4x3(x+1)24x+1+1(x+1)2

 

Finally, we find: 2x21x2+2x+12+4x3x2+2x+124x+1+1(x+1)2 and thus: A=2B=4C=1

 

반응형
Question 7. (P) By factorising the denominator, express the following as partial fractions: (a)4x2+17x11x2+3x4(b)x44x3+9x217x+12x34x2+4x

 

(Edexcel 2017 Specifications, P2 Ch1 Exercise 1G Q7.)

 

Solution.

더보기

(a) (i) Step 1: Algebraic division.

By algebraic long division (see the YouTube clip below for more details), 4x2+17x11x2+3x44(x2+3x43x+4)+17x11x2+3x44(x2+3x4)+5x+5x2+3x44+5x+5x2+3x4

 

(ii) Step 2: Partial fractions.

Factorise the denominator first: x2+3x4=(x1)(x+4) Let 5x+5(x1)(x+4)Bx1+Cx+4B(x+4)+C(x1)(x+1)2 Compare the numerators on both sides: B(x+4)+C(x1)5x+5 By the method of substitution: (i)x=15B=5+5=10B=2(ii)x=45C=20+5=15C=3 and we obtain: 5x+5(x1)(x+4)2x1+3x+4

 

Finally, we find: 4x2+17x11x2+3x44+5x+5x2+3x44+2x1+3x+4


(b) (i) Step 1: Algebraic division.

By algebraic long division (see the YouTube clip below for more details), x44x3+9x217x+12x(x34x2+4x)+5x217x+12x44x3+9x217x+12x34x2+4xx+5x217x+12x34x2+4x

 

(ii) Step 2: Partial fractions.

Factorise the denominator first: x34x2+4x=x(x24x+4)=x(x2)2 and this gives partial fractions with repeated factors. Let 5x217x+12x34x2+4x5x217x+12x(x2)2Bx+Cx2+D(x2)2B(x2)2+Cx(x2)+Dxx(x2)2 Compare the numerators on both sides: B(x2)2+Cx(x2)+Dx5x217x+12 By the method of substitution: (i)x=04B=12B=3(ii)x=22D=5(2)217(2)+12=2034+12=2D=1(iii)x=1BC+D=517+12=0C=B+D=2 and we obtain: 5x217x+12x34x2+4x5x217x+12x(x2)23x+2x21(x2)2

 

Finally, we find: x44x3+9x217x+12x34x2+4xx+5x217x+12x34x2+4xx+3x+2x21(x2)2

 

 

반응형
Question 8. (E) Given that 6x37x2+33x2+x10Ax+B+C3x5+Dx+2, find the values of the constants A,B,C and D. [6 marks]

 

(Edexcel 2017 Specifications, P2 Ch1 Exercise 1G Q8.)

 

Solution.

더보기

(i) Step 1: Algebraic division.

By algebraic long division (see the YouTube clip below for more details), 6x37x2+3(2x3)(3x2+x10)+23x276x37x2+33x2+x102x3+23x273x2+x10

 

(ii) Step 2: Partial fractions.

Factorise the denominator first: 3x2+x10=(3x5)(x+2) Let 23x273x2+x1023x27(3x5)(x+2)C3x5+Dx+2C(x+2)+D(3x5)(3x5)(x+2) Compare the numerators on both sides: C(x+2)+D(3x5)23x27 By the method of substitution: (i)x=53(53+2)C=23×5327113C=1153813=343C=3411(ii)x=211D=4627=73D=7311 and we obtain: 23x273x2+x1023x27(3x5)(x+2)34113x5+7311x+23411(3x5)+7311(x+2)111(343x5+73x+2)

 

Finally, we find: 6x37x2+33x2+x102x3+23x273x2+x102x3+111(343x5+73x+2)

 

반응형
Question 9. (E) q(x)=8x3+14x24x+1 Show that q(x) can be written in the form Ax+B+C2x1+D(2x1)2 and find the values of the constants A,B,C and D. [6 marks]

 

(Edexcel 2017 Specifications, P2 Ch1 Exercise 1G Q9.)

 

Solution.

더보기

(i) Step 1: Algebraic division.

By algebraic long division (see the YouTube clip below for more details), 8x3+1(2x+2)(4x24x+1)+6x18x3+14x24x+12x+2+6x14x24x+1

 

(ii) Step 2: Partial fractions.

Factorise the denominator first: 4x24x+1=(2x1)2 and this gives partial fractions with repeated factors. Let 6x14x24x+16x1(2x1)2C2x1+D(2x1)2C(2x1)+D2x1 Compare the numerators on both sides: C(2x1)+D6x1 By equating coefficients: {2C=6C+D=1{C=3D=2 and we obtain: 6x14x24x+16x1(2x1)232x1+2(2x1)2

 

Finally, we find: 8x3+14x24x+12x+2+6x14x24x+12x+2+32x1+2(2x1)2 and thus: A=2B=2C=3D=2

 

반응형
Question 10. (E) h(x)=x4+2x23x+8x2+x2 Show that h(x) can be written as Ax2+Bx+C+Dx+2+Ex1 and find the values of A,B,C,D and E. [5 marks]

 

(Edexcel 2017 Specifications, P2 Ch1 Exercise 1G Q10.)

 

Solution.

더보기

(i) Step 1: Algebraic division.

By algebraic long division (see the YouTube clip below for more details), x4+2x23x+8(x2x+5)(x2+x2)10x+18x4+2x23x+8x2+x2x2x+5+10x+18x2+x2

 

(ii) Step 2: Partial fractions.

Factorise the denominator first: x2+x2=(x+2)(x1) Let 10x+18x2+x210x+18(x+2)(x1)Dx+2+Ex1D(x1)+E(x+2)(x+2)(x1) Compare the numerators on both sides: D(x1)+E(x+2)10x+18 By the method of substitution: (i)x=23D=20+18=38D=383(ii)x=13E=10+18=8E=83 and we obtain: 10x+18x2+x210x+18(x+2)(x1)383x+2+83x113(38x+2+8x1)

 

Finally, we find: x4+2x23x+8x2+x2x2x+5+10x+18x2+x2x2x+5+13(38x+2+8x1) and thus: A=1B=1C=5D=383E=83

 

 

반응형

'A-level Mathematics > Pure Mathematics 2' 카테고리의 다른 글

P2 §1.7 Review exercise for chapter 1  (0) 2022.06.28
P2 §1.6 Mixed exercise for chapter 1  (0) 2022.06.28
P2 §1.4 Repeated factors  (0) 2022.06.28
P2 §1.3 Partial fractions  (0) 2022.06.28
P2 §1.2 Algebraic fractions  (0) 2022.06.28