일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 |
- fractions
- 바이어슈트라스
- differential
- algebraic
- 교육
- Order
- a-level
- solution
- College
- 학년
- DENOMINATOR
- triangle
- 적분
- Oxford
- 치환
- test
- integral
- 영국
- Weierstrass
- t-치환
- GCSE
- factors
- 제도
- mathematics
- factor
- Partial
- division
- equation
- Maths
- Admissions
- Today
- Total
Cambridge Maths Academy
P2 §1.5 Algebraic division 본문
P2 §1.5 Algebraic division
Cambridge Maths Academy 2022. 6. 28. 21:35Pure mathematics Year 2
Table of contents
- Algebraic division
- Examples
- Edexcel P2 Ch1 Exercise 1F
- Improper fractions in partial fractions
- Edexcel P2 Ch1 Exercise 1G
1. Algebraic division
An improper algebraic fraction is one whose numerator has a degree equal to or larger than the denominator.
- The degree of a polynomial is the largest exponent in the expression. For example, x3+5x−9x3+5x−9 has degree 3.
- x2+5x+8x−2x2+5x+8x−2 is an example where the degree of the numerator is greater than the degree of the denominator.
- x3+5x−9x3−4x2+7x−3x3+5x−9x3−4x2+7x−3 is an example where the degrees of the numerator and denominator are equal.
An improper fraction must be converted to a mixed fraction before we can express it in partial fractions. We can use algebraic division: F(x)=(Quotient)×(Divisor)+(Remainder)⇔F(x)=Q(x)D(x)+R(x)⇔F(x)D(x)≡Q(x)+R(x)D(x)(a mixed fraction)
- Our first example above can be written as: x2+5x+8≡(x+7)(x−2)+22⇔x2+5x+8x−2≡x+7+22x−2
- The second example above can be written as: x3+5x−9≡1×(x3−4x2+7x−3)+(4x2−2x−6)⏟2(x+1)(2x−3)⇔x3+5x−9x3−4x2+7x−3≡1+2(x+1)(2x−3)x3−4x2+7x−3
2. Examples
Example 1. By algebraic long division, or otherwise, show that x3+x2−7≡(Ax2+Bx+C)(x−3)+D and that x3+x2−7x−3≡Ax2+Bx+C+Dx−3, where A,B,C and D are constants to be found.
(Edexcel 2017 Specifications, P2 Ch1 Examples 11 and 12.)
Solution.
x3+x2−7≡(x2+4x+12)(x−3)+29⇔x3+x2−7x−3≡x2+4x+12+29x−3 Hence, A=1B=4C=12D=29
Example 2. f(x)=x4+x3+x−10x2+2x−3 Show that f(x) can be written as Ax2+Bx+C+Dx+Ex2+2x−3 and find the values of A,B,C,D and E.
(Edexcel 2017 Specifications, P2 Ch1 Example 13.)
Solution.
x4+x3+x−10≡(x2−x+5)(x2+2x−3)+(−12x+5)⇔f(x)=x4+x3+x−10x2+2x−3≡x2−x+5+−12x+5x2+2x−3 Hence, A=1B=−1C=5D=−12E=5
3. Edexcel P2 Ch1 Exercise 1F
Question 1. (E) x3+2x2+3x−4x+1≡Ax2+Bx+C+Dx+1. Find the values of the constants A,B,C and D. [4 marks]
(Edexcel 2017 Specifications, P2 Ch1 Exercise 1F Q1.)
Solution.
x3+2x2+3x−4≡(x2+x+2)(x+1)−6⇔x3+2x2+3x−4x+1≡x2+x+2+−6x+1 Hence, A=1B=1C=2D=−6
Question 2. (E) Given that 2x3+3x2−4x+5x+3≡ax2+bx+c+dx+3, find the values of a,b,c and d. [4 marks]
(Edexcel 2017 Specifications, P2 Ch1 Exercise 1F Q2.)
Solution.
2x3+3x2−4x+5≡(2x2−3x+5)(x+3)−10⇔2x3+3x2−4x+5x+3≡2x2−3x+5+−10x+3 Hence, a=2b=−3c=5d=−10
Question 3. (E) f(x)=x3−8x−2 Show that f(x) can be written in the form px2+qx+r and find the values of p,q and r. [4 marks]
(Edexcel 2017 Specifications, P2 Ch1 Exercise 1F Q3.)
Solution.
x3−8≡(x2+2x+4)(x−1)⇔x3−8x−2≡x2+2x+4 Hence, p=1q=2r=4
Question 4. (E) Given that 2x2+4x+5x2−1≡m+nx+px2−1, find the values of m,n and p. [4 marks]
(Edexcel 2017 Specifications, P2 Ch1 Exercise 1F Q4.)
Solution.
2x2+4x+5≡2(x2−1)+4x+7⇔2x2+4x+5x2−1≡2+4x+7x2−1 Hence, m=2n=4p=7
Question 5. (E) Find the values of the constants A,B,C and D in the following identity: 8x3+2x2+5≡(Ax+B)(2x2+2)+Cx+D [4 marks]
(Edexcel 2017 Specifications, P2 Ch1 Exercise 1F Q5.)
Solution.
8x3+2x2+5≡(4x+1)(2x2+2)−8x+3⇔8x3+2x2+52x2+2≡4x+1+−8x+32x2+2 Hence, A=4B=1C=−8D=3
Question 6. (E) 4x3−5x2+3x−14x2+2x−1≡Ax+B+Cx+Dx2+2x−1. Find the values of the constants A,B,C and D. [4 marks]
(Edexcel 2017 Specifications, P2 Ch1 Exercise 1F Q6.)
Solution.
4x3−5x2+3x−14≡(4x−13)(x2+2x−1)+33x−27⇔4x3−5x2+3x−14x2+2x−1≡4x−13+33x−27x2+2x−1 Hence, A=4B=−13C=33D=−27
Question 7. (E) g(x)=x4+3x2−4x2+1 Show that g(x) can be written in the form px2+qx+r+sx+tx2+1 and find the values of p,q,r,s and t. [4 marks]
(Edexcel 2017 Specifications, P2 Ch1 Exercise 1F Q7.)
Solution.
x4+3x2−4≡(x2+2)(x2+1)−6⇔g(x)=x4+3x2−4x2+1≡x2+2+−6x2+1 Hence, p=1q=0r=2s=0t=−6
Question 8. (E) Given that 2x4+3x3−2x2+4x−6x2+x−2≡ax2+bx+c+dx+ex2+x−2, find the values of a,b,c,d and e. [5 marks]
(Edexcel 2017 Specifications, P2 Ch1 Exercise 1F Q8.)
Solution.
2x4+3x3−2x2+4x−6≡(2x2+x+1)(x2+x−2)+5x−4⇔2x4+3x3−2x2+4x−6x2+x−2≡2x2+x+1+5x−4x2+x−2 Hence, a=2b=1c=1d=5e=−4
Question 9. (E) Find the values of the constants A,B,C,D and E in the following identity: 3x4−4x3−8x2+16x−2≡(Ax2+Bx+C)(x2−3)+Dx+E [5 marks]
(Edexcel 2017 Specifications, P2 Ch1 Exercise 1F Q9.)
Solution.
3x4−4x3−8x2+16x−2≡(3x2−4x+1)(x2−3)+4x+1⇔3x4−4x3−8x2+16x−2x2−3≡3x2−4x+1+4x+1x2−3 Hence, A=3B=−4C=1D=4E=1
Question 10. (E/P)(a) Fully factorise the expression x4−1. [2 marks]
(b) Hence, or otherwise, write the algebraic fraction x4−1x+1 in the form (ax+b)(cx2+dx+e) and find the values of a,b,c,d and e. [4 marks]
(Edexcel 2017 Specifications, P2 Ch1 Exercise 1F Q10.)
Solution.
(a) We have: x4−1=(x2+1)(x2−1)=(x2+1)(x+1)(x−1)
(b) This gives x4−1x+1=(x2+1)(x+1)(x−1)x+1=(x−1)(x2+1) so we find: A=1B=−1C=1D=0E=1
4. Improper fractions in partial fractions
In order to express an improper algebraic fraction in partial fractions, we need to divide the numerator by the denominator first. Recall that an improper algebraic fraction is one where the degree of the numerator is greater than or equal to the degree of the denominator.
Example. Given that 3x2−3x−2(x−1)(x−2)≡A+Bx−1+Cx−2, find the values of A,B and C.
(Edexcel 2017 Specifications, P2 Ch1 Example 14.)
Solution.
(i) Step 1: Algebraic division.
We note that (x−1)(x−2)=x2−3x+2. By algebraic long division (see the YouTube clip below for more details), 3x2−3x−2≡3(x2−3x+2+3x−2)−3x−2≡3(x2−3x+2)+6x−8⇔3x2−3x−2(x−1)(x−2)≡3+6x−8(x−1)(x−2)
(ii) Step 2: Partial fractions.
Let 6x−8(x−1)(x−2)≡Bx−1+Cx−2≡B(x−2)+C(x−1)(x−1)(x−2) Compare the numerators on both sides: B(x−2)+C(x−1)≡6x−8 By the method of substitution: (i)x=1⇒−B=−2⇒B=2(ii)x=2⇒C=12−8=4 and we obtain: ⇒6x−8(x−1)(x−2)≡2x−1+4x−2
Finally, we find: ⇒3x2−3x−2(x−1)(x−2)≡3+6x−8(x−1)(x−2)≡3+2x−1+4x−2✓ and thus: A=3B=2C=4
5. Edexcel P2 Ch1 Exercise 1G
Question 1. (E) g(x)=x2+3x−2(x−1)(x−2). Show that g(x) can be written in the form A+Bx−1+Cx−2 and find the values of the constants A,B and C. [4 marks]
(Edexcel 2017 Specifications, P2 Ch1 Exercise 1G Q1.)
Solution.
(i) Step 1: Algebraic division.
We note that (x−1)(x−2)=x2−3x+2. By algebraic long division (see the YouTube clip below for more details), x2+3x−2≡(x2−3x+2+3x−2)+3x−2≡(x2−3x+2)+6x−4⇔x2−3x−2(x−1)(x−2)≡1+6x−4(x−1)(x−2)
(ii) Step 2: Partial fractions.
Let 6x−4(x−1)(x−2)≡Bx−1+Cx−2≡B(x−2)+C(x−1)(x−1)(x−2) Compare the numerators on both sides: B(x−2)+C(x−1)≡6x−4 By the method of substitution: (i)x=1⇒−B=2⇒B=−2(ii)x=2⇒C=12−4=8 and we obtain: ⇒6x−4(x−1)(x−2)≡−2x−1+8x−2
Finally, we find: ⇒3x2−3x−2(x−1)(x−2)≡1+6x−4(x−1)(x−2)≡1−2x−1+8x−2✓ and thus: A=1B=−2C=8
Question 2. (E) Given that x2−10(x−2)(x+1)≡A+Bx−2+Cx+1, find the values of the constants A,B and C. [4 marks]
(Edexcel 2017 Specifications, P2 Ch1 Exercise 1G Q2.)
Solution.
(i) Step 1: Algebraic division.
We note that (x−2)(x+1)=x2−x−2. By algebraic long division (see the YouTube clip below for more details), x2−10≡(x2−x−2+x+2)−10≡(x2−x−2)+x−8⇔x2−10(x−2)(x+1)≡1+x−8(x−2)(x+1)
(ii) Step 2: Partial fractions.
Let x−8(x−2)(x+1)≡Bx−2+Cx+1≡B(x+1)+C(x−2)(x−1)(x−2) Compare the numerators on both sides: B(x+1)+C(x−2)≡x−8 By the method of substitution: (i)x=2⇒3B=−6⇒B=−2(ii)x=−1⇒−3C=−1−8=−9⇒C=3 and we obtain: ⇒x−8(x−2)(x+1)≡−2x−2+3x+1
Finally, we find: ⇒x2−10(x−2)(x+1)≡1+x−8(x−2)(x+1)≡1−2x−2+3x+1✓ and thus: A=1B=−2C=3
Question 3. (E) Find the values of the constants A,B,C and D in the following identity: x3−x2−x−3x(x−1)≡Ax+B+Cx+Dx−1 [5 marks]
(Edexcel 2017 Specifications, P2 Ch1 Exercise 1G Q3.)
Solution.
(i) Step 1: Algebraic division.
We note that x(x−1)=x2−x. By algebraic long division (see the YouTube clip below for more details), x3−x2−x−3≡x(x2−x)−x−3⇔x3−x2−x−3x(x−1)≡x+−x−3x(x−1)
(ii) Step 2: Partial fractions.
Let −x−3x(x−1)≡Cx+Dx−1≡C(x−1)+Dxx(x−1) Compare the numerators on both sides: C(x−1)+Dx≡−x−3 By the method of substitution: (i)x=0⇒−C=−3⇒C=3(ii)x=1⇒D=−1−3=−4 and we obtain: ⇒−x−3x(x−1)≡3x−4x−1
Finally, we find: ⇒x3−x2−x−3x(x−1)≡x+−x−3x(x−1)≡x+3x−4x−1✓ and thus: A=1B=0C=3D=−4
Question 4. (E) Show that −3x3−4x2+19x+8x2+2x−3 can be expressed in the form A+Bx+C(x−1)+D(x+3), where A,B,C and D are constants to be found. [5 marks]
(Edexcel 2017 Specifications, P2 Ch1 Exercise 1G Q4.)
Solution.
(i) Step 1: Algebraic division.
By algebraic long division (see the YouTube clip below for more details), −3x3−4x2+19x+8≡(−3x+2)(x2+2x−3)+6x+14⇔−3x3−4x2+19x+8x2+2x−3≡−3x+2+6x+14x2+2x−3
(ii) Step 2: Partial fractions.
Factorise the denominator first: x2+2x−3=(x−1)(x+3) Let 6x+14(x−1)(x+3)≡Cx−1+Dx+3≡C(x+3)+D(x−1)(x−1)(x+3) Compare the numerators on both sides: C(x+3)+D(x−1)≡6x+14 By the method of substitution: (i)x=1⇒4C=6+14=20⇒C=5(ii)x=−3⇒−4D=−18+14=−4⇒D=1 and we obtain: ⇒6x+14(x−1)(x+3)≡5x−1+1x+3
Finally, we find: ⇒−3x3−4x2+19x+8x2+2x−3≡2−3x+6x+14x2+2x−3≡2−3x+5x−1+1x+3✓ and thus: A=2B=−3C=5D=1
Question 5. (E) p(x)≡4x2+254x2−25 Show that p(x) can be written in the form A+B2x−5+C2x+5, where A,B and C are constants to be found. [4 marks]
(Edexcel 2017 Specifications, P2 Ch1 Exercise 1G Q5.)
Solution.
(i) Step 1: Algebraic division.
By algebraic long division (see the YouTube clip below for more details), p(x)≡4x2+254x2−25≡(4x2−25)+504x2−25≡1+504x2−25
(ii) Step 2: Partial fractions.
Factorise the denominator first: 4x2−25=(2x−5)(2x+5) Let 50(2x−5)(2x+5)≡B2x−5+C2x+5≡B(2x+5)+C(2x−5)(2x−5)(2x+5) Compare the numerators on both sides: B(2x+5)+C(2x−5)≡50 By the method of substitution: (i)x=52⇒10B=50⇒B=5(ii)x=52⇒−10C=50⇒C=−5 and we obtain: ⇒50(2x−5)(2x+5)≡52x−5−52x+5
Finally, we find: ⇒p(x)≡4x2+254x2−25≡1+504x2−25≡1+52x−5−52x+5✓ and thus: A=1B=5C=−5
Question 6. (E) Given that 2x2−1x2+2x+1≡A+Bx+1+C(x+1)2, find the values of the constants A,B and C. [4 marks]
(Edexcel 2017 Specifications, P2 Ch1 Exercise 1G Q6.)
Solution.
(i) Step 1: Algebraic division.
By algebraic long division (see the YouTube clip below for more details), 2x2−1x2+2x+1≡2(x2+2x+1−2x−1)−1x2+2x+1≡2(x2+2x+1)−4x−3x2+2x+1≡2+−4x−3x2+2x+1
(ii) Step 2: Partial fractions.
Factorise the denominator first: x2+2x+1=(x+1)2 and this gives partial fractions with repeated factors. Let −4x−3(x+1)2≡Bx+1+C(x+1)2≡B(x+1)+C(x+1)2 Compare the numerators on both sides: B(x+1)+C≡−4x−3 By equating coefficients: {B=−4B+C=−3⇒{B=−4C=1 and we obtain: ⇒−4x−3(x+1)2≡−4x+1+1(x+1)2
Finally, we find: ⇒2x2−1x2+2x+1≡2+−4x−3x2+2x+1≡2−4x+1+1(x+1)2✓ and thus: A=2B=−4C=1
Question 7. (P) By factorising the denominator, express the following as partial fractions: (a)4x2+17x−11x2+3x−4(b)x4−4x3+9x2−17x+12x3−4x2+4x
(Edexcel 2017 Specifications, P2 Ch1 Exercise 1G Q7.)
Solution.
(a) (i) Step 1: Algebraic division.
By algebraic long division (see the YouTube clip below for more details), 4x2+17x−11x2+3x−4≡4(x2+3x−4−3x+4)+17x−11x2+3x−4≡4(x2+3x−4)+5x+5x2+3x−4≡4+5x+5x2+3x−4
(ii) Step 2: Partial fractions.
Factorise the denominator first: x2+3x−4=(x−1)(x+4) Let 5x+5(x−1)(x+4)≡Bx−1+Cx+4≡B(x+4)+C(x−1)(x+1)2 Compare the numerators on both sides: B(x+4)+C(x−1)≡5x+5 By the method of substitution: (i)x=1⇒5B=5+5=10⇒B=2(ii)x=−4⇒−5C=−20+5=−15⇒C=3 and we obtain: ⇒5x+5(x−1)(x+4)≡2x−1+3x+4
Finally, we find: ⇒4x2+17x−11x2+3x−4≡4+5x+5x2+3x−4≡4+2x−1+3x+4✓
(b) (i) Step 1: Algebraic division.
By algebraic long division (see the YouTube clip below for more details), x4−4x3+9x2−17x+12≡x(x3−4x2+4x)+5x2−17x+12⇔x4−4x3+9x2−17x+12x3−4x2+4x≡x+5x2−17x+12x3−4x2+4x
(ii) Step 2: Partial fractions.
Factorise the denominator first: x3−4x2+4x=x(x2−4x+4)=x(x−2)2 and this gives partial fractions with repeated factors. Let 5x2−17x+12x3−4x2+4x≡5x2−17x+12x(x−2)2≡Bx+Cx−2+D(x−2)2≡B(x−2)2+Cx(x−2)+Dxx(x−2)2 Compare the numerators on both sides: B(x−2)2+Cx(x−2)+Dx≡5x2−17x+12 By the method of substitution: (i)x=0⇒4B=12⇒B=3(ii)x=2⇒2D=5(2)2−17(2)+12=20−34+12=−2⇒D=−1(iii)x=1⇒B−C+D=5−17+12=0⇒C=B+D=2 and we obtain: ⇒5x2−17x+12x3−4x2+4x≡5x2−17x+12x(x−2)2≡3x+2x−2−1(x−2)2
Finally, we find: ⇒x4−4x3+9x2−17x+12x3−4x2+4x≡x+5x2−17x+12x3−4x2+4x≡x+3x+2x−2−1(x−2)2✓
Question 8. (E) Given that 6x3−7x2+33x2+x−10≡Ax+B+C3x−5+Dx+2, find the values of the constants A,B,C and D. [6 marks]
(Edexcel 2017 Specifications, P2 Ch1 Exercise 1G Q8.)
Solution.
(i) Step 1: Algebraic division.
By algebraic long division (see the YouTube clip below for more details), 6x3−7x2+3≡(2x−3)(3x2+x−10)+23x−27⇔6x3−7x2+33x2+x−10≡2x−3+23x−273x2+x−10
(ii) Step 2: Partial fractions.
Factorise the denominator first: 3x2+x−10=(3x−5)(x+2) Let 23x−273x2+x−10≡23x−27(3x−5)(x+2)≡C3x−5+Dx+2≡C(x+2)+D(3x−5)(3x−5)(x+2) Compare the numerators on both sides: C(x+2)+D(3x−5)≡23x−27 By the method of substitution: (i)x=53⇒(53+2)C=23×53−27⇒113C=1153−813=343⇒C=3411(ii)x=−2⇒−11D=−46−27=−73⇒D=7311 and we obtain: ⇒23x−273x2+x−10≡23x−27(3x−5)(x+2)≡34113x−5+7311x+2≡3411(3x−5)+7311(x+2)≡111(343x−5+73x+2)
Finally, we find: ⇒6x3−7x2+33x2+x−10≡2x−3+23x−273x2+x−10≡2x−3+111(343x−5+73x+2)✓
Question 9. (E) q(x)=8x3+14x2−4x+1 Show that q(x) can be written in the form Ax+B+C2x−1+D(2x−1)2 and find the values of the constants A,B,C and D. [6 marks]
(Edexcel 2017 Specifications, P2 Ch1 Exercise 1G Q9.)
Solution.
(i) Step 1: Algebraic division.
By algebraic long division (see the YouTube clip below for more details), 8x3+1≡(2x+2)(4x2−4x+1)+6x−1⇔8x3+14x2−4x+1≡2x+2+6x−14x2−4x+1
(ii) Step 2: Partial fractions.
Factorise the denominator first: 4x2−4x+1=(2x−1)2 and this gives partial fractions with repeated factors. Let 6x−14x2−4x+1≡6x−1(2x−1)2≡C2x−1+D(2x−1)2≡C(2x−1)+D2x−1 Compare the numerators on both sides: C(2x−1)+D≡6x−1 By equating coefficients: {2C=6−C+D=−1⇒{C=3D=2 and we obtain: ⇒6x−14x2−4x+1≡6x−1(2x−1)2≡32x−1+2(2x−1)2
Finally, we find: ⇒8x3+14x2−4x+1≡2x+2+6x−14x2−4x+1≡2x+2+32x−1+2(2x−1)2✓ and thus: A=2B=2C=3D=2
Question 10. (E) h(x)=x4+2x2−3x+8x2+x−2 Show that h(x) can be written as Ax2+Bx+C+Dx+2+Ex−1 and find the values of A,B,C,D and E. [5 marks]
(Edexcel 2017 Specifications, P2 Ch1 Exercise 1G Q10.)
Solution.
(i) Step 1: Algebraic division.
By algebraic long division (see the YouTube clip below for more details), x4+2x2−3x+8≡(x2−x+5)(x2+x−2)−10x+18⇔x4+2x2−3x+8x2+x−2≡x2−x+5+−10x+18x2+x−2
(ii) Step 2: Partial fractions.
Factorise the denominator first: x2+x−2=(x+2)(x−1) Let −10x+18x2+x−2≡−10x+18(x+2)(x−1)≡Dx+2+Ex−1≡D(x−1)+E(x+2)(x+2)(x−1) Compare the numerators on both sides: D(x−1)+E(x+2)≡−10x+18 By the method of substitution: (i)x=−2⇒−3D=20+18=38⇒D=−383(ii)x=1⇒3E=−10+18=8⇒E=83 and we obtain: ⇒−10x+18x2+x−2≡−10x+18(x+2)(x−1)≡−383x+2+83x−1≡13(−38x+2+8x−1)
Finally, we find: ⇒x4+2x2−3x+8x2+x−2≡x2−x+5+−10x+18x2+x−2≡x2−x+5+13(−38x+2+8x−1)✓ and thus: A=1B=−1C=5D=−383E=83
'A-level Mathematics > Pure Mathematics 2' 카테고리의 다른 글
P2 §1.7 Review exercise for chapter 1 (0) | 2022.06.28 |
---|---|
P2 §1.6 Mixed exercise for chapter 1 (0) | 2022.06.28 |
P2 §1.4 Repeated factors (0) | 2022.06.28 |
P2 §1.3 Partial fractions (0) | 2022.06.28 |
P2 §1.2 Algebraic fractions (0) | 2022.06.28 |