일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- integral
- test
- fractions
- factor
- 적분
- 학년
- equation
- Admissions
- GCSE
- algebraic
- factors
- triangle
- division
- Weierstrass
- Maths
- mathematics
- Order
- Oxford
- a-level
- 치환
- DENOMINATOR
- differential
- 교육
- 바이어슈트라스
- College
- 영국
- Partial
- solution
- t-치환
- 제도
- Today
- Total
Cambridge Maths Academy
P2 §1.4 Repeated factors 본문
P2 §1.4 Repeated factors
Cambridge Maths Academy 2022. 6. 28. 21:35Pure mathematics Year 2
Table of contents
- Partial fractions revisited
- Partial fractions with repeated factors
- Examples
- Edexcel P2 Ch1 Exercise 1E
The main task of this section is to understand partial fractions with repeated factors. In order to do so, we need to consider and understand some general form of fractions.
1. Partial fractions revisited
In the previous section, P2 §1.3 Partial fractions, we studies partial fractions when there are two or three linear factors in the denominator.
1.1. Two linear factors
For example:
$$ \begin{align} \frac{ A }{ x + 2 } + \frac{ B }{ x - 1 } &= \frac{ A (x - 1) + B (x + 2) }{ (x + 2) (x - 1) } \\ &= \frac{ (A+B)x + (-A+2B) }{ (x + 2) (x - 1) } \\ &= \frac{ \textrm{Linear} }{ \textrm{Quadratic} } \end{align} $$
1.2. Three linear factors
For example:
$$ \begin{align} \frac{ A }{ x + 2 } + \frac{ B }{ x - 1 } + \frac{ C }{ x - 3 } &= \frac{ A (x - 1)(x - 3) + B (x + 2)(x - 3) + C (x + 2)(x - 1) }{ (x + 2) (x - 1) (x - 3) } \\ &= \frac{ A \left( x^2 - 4x + 3 \right) + B \left( x^2 - x - 6 \right) + C \left( x^2 + x - 2 \right) }{ (x + 2) (x - 1) (x - 3) } \\ &= \frac{ (A+B+C) x^2 + (-4A -B + C) x + (3A -6B -2C) }{ (x + 2) (x - 1) (x - 3) } \\ &= \frac{ \textrm{Quadratic} }{ \textrm{Cubic} } \end{align} $$
1.3. One quadratic factor and one linear factor
We may generalise this to the case where we have one quadratic factor and one linear factor.
A first attempt: $$ \begin{align} \frac{ A }{ x^2 + x + 1 } + \frac{ B }{ x - 1 } &= \frac{ A (x - 1) + B \left( x^2 + x + 1 \right) }{ \left( x^2 + x + 1 \right) (x - 1) } \\ &= \frac{ B x^2 + (A + B) x + (B - A) }{ \left( x^2 + x + 1 \right) (x - 1) } \end{align} $$ However, there are three coefficients in the numerator expressed in terms of two variables $A$ and $B$. This could be problematic as we may not be able to find $A$ and $B$ that satisfy three conditions. (In the language of simultaneous equations, we need the same number of variables as the number of equations/conditions.)
Our second (and correct) attempt: $$ \begin{align} \frac{ Ax + B }{ x^2 + x + 1 } + \frac{ C }{ x - 1 } &= \frac{ (Ax + B) (x - 1) + C \left( x^2 + x + 1 \right) }{ \left( x^2 + x + 1 \right) (x - 1) } \\ &= \frac{ ( A + B + C) x^2 + (-A + B + C) x + (- B + C) }{ \left( x^2 + x + 1 \right) (x - 1) } \end{align} $$ where the number of equations and that of variables are equal. The final result is of the form $$ \frac{ Ax + B }{ \textrm{Quadratic} } + \frac{ C }{ \textrm{Linear} } = \frac{ \textrm{Quadratic} }{ \textrm{Quadratic} \times \textrm{Linear} } = \frac{ \textrm{Quadratic} }{ \textrm{Cubic} } $$
1.4. A general case
We may generalise this further to: $$ \begin{align} \frac{ \textrm{Polynomial of order $n$} }{ \textrm{Polynomial of order $n+1$} } = \frac{ \textrm{Polynomial of order $p-1$} }{ \textrm{Polynomial of order $p$} } + \frac{ \textrm{Polynomial of order $q-1$} }{ \textrm{Polynomial of order $q$} } \end{align} $$ where $p+q=n+1$.
- The polynomial of order $n$ has $n+1$ coefficients.
- The polynomial of order $p-1$ has $p$ coefficients.
- The polynomial of order $q-1$ has $q$ coefficients.
- Thus, the number of coefficients on the LHS, $n+1$, matches the number of variables on the RHS, $p+q$.
An example: $$ \begin{align} \frac{ 11x^4 - 7 x^3 + 5 x^2 + x - 3 }{ \left( x^3 + x^2 + x + 1 \right) \left( x^2 + x + 1 \right) } &= \frac{ A x^2 + B x + C }{ x^3 + x^2 + x + 1 } + \frac{ D x + E }{ x^2 + x + 1 } \end{align} $$
2. Partial fractions with repeated factors
We will study partial fractions with repeated factors with an example.
Step 1. For partial fractions with repeated factors, it is essentially the case where we have a quadratic factor and a linear factor in the denominator. For example, $$ \begin{align} \frac{ 2x + 9 }{ (x - 5)(x + 3)^2 } &= \frac{ 2x + 9 }{ (x - 5) \left( x^2 + 6x + 9 \right) } \\ &= \frac{A}{x-5} + \frac{Bx + C}{x^2 + 6x + 9} \\ &= \frac{ A (x + 3)^2 + (Bx + C) (x - 5) }{ (x - 5) \left( x^2 + 6x + 9 \right) } \end{align} $$
By the method of substitution, we find: $$ \begin{align} \textrm{(i)}&& x &= -3 &&\Rightarrow& & -8(-3B + C) = 2(-3) + 9 = 3 \\ \\ \textrm{(ii)}&& x &= 5 &&\Rightarrow& & 64A = 2(5) + 9 = 19 \\ \\ \textrm{(iii)}&& x &= 0 &&\Rightarrow& & 9A - 5C = 9 \end{align} $$ We see that:
- Unlike linear factors, even with the method of substitution, the coefficients appear together and we need to solve them as simultaneous equations.
- The numerator on the RHS suggests only two convenient choices for $x$. For the third one, we may choose any convenient number, usually $x=0,\pm 1$ and so on.
This gives
$$ \begin{align} A &= \frac{19}{64} \\ \\ C &= \frac{9(A-1)}{5} = \frac95 \left( - \frac{45}{64} \right) = - \frac{81}{64} \\ \\ B &= - \frac13 \left( -\frac38 - C \right) = - \frac13 \left( -\frac{24}{64} + \frac{81}{64} \right) = - \frac{19}{64} \end{align} $$ and thus, for partial fractions, we obtain : $$ \begin{align} \Rightarrow \qquad \frac{ 2x + 9 }{ (x - 5)(x + 3)^2 } &= \frac{19}{64(x-5)} - \frac{19x + 81}{ 64( x + 3 )^2 } \end{align} $$
Step 2. We can simplify the second term with the repeated factor as follows. $$ \begin{align} \frac{19x + 81}{ 64( x + 3 )^2 } &= \frac{19(x+3-3)+ 81}{ 64( x + 3 )^2 } \\ &= \frac{19(x+3) + 24}{ 64( x + 3 )^2 } \\ &= \frac{19}{64(x+3)} + \frac{3}{8(x+3)^2} \end{align} $$ and thus the partial fractions now read: $$ \begin{align} \frac{ 2x + 9 }{ (x - 5)(x + 3)^2 } &= \frac{19}{64(x-5)} - \frac{19}{64(x+3)} - \frac{3}{8(x+3)^2} \end{align} $$
Step 3. In general, for partial fractions with repeated factors, we find: $$ \begin{align} \frac{ ax^2 + bx + c }{ (x - 5) (x + 3)^2 } = \frac{ A }{ x - 5 } + \frac{ B }{ (x + 3) } + \frac{ C }{ (x + 3)^2 } \end{align} $$
A generalisation
If more factors are repeated, we can go through the same steps and find a similar result. For example, $$ \begin{align} \frac{ 2x^4 + 9x - 7 }{ (x - 5)^2 (x + 3)^3 } &= \frac{ Ax + b }{ (x - 5)^2 } + \frac{ Cx^2 + dx + e }{ (x + 3)^3 } \\ &= \frac{ A(x-5) + 5a + b }{ (x - 5)^2 } + \frac{ C(x+3)^2 + D(x+3) + E }{ (x + 3)^3 } \\ &= \frac{ A }{ x - 5 } + \frac{ B }{ (x - 5)^2 } + \frac{ C }{ x + 3 } + \frac{ D }{ x + 3)^2 } + \frac{ E }{ (x + 3)^3 } \end{align} $$
3. Examples
Example. Show that $$ \frac{ 11x^2 + 14x + 5 }{ (x+1)^2 (2x+1) } $$ can be written in the form $$ \frac{ A }{ x + 1 } + \frac{ B }{ (x+1)^2 } + \frac{ C }{ 2x + 1 }, $$ where $A,B$ and $C$ are constants to be found.
(Edexcel 2017 Specifications, P2 Ch1 Example 10.)
Solution.
4. Edexcel P2 Ch1 Exercise 1E
Question 1. (E) $$ \textrm f(x) = \frac{ 3x^2 + x + 1 }{ x^2 (x+1) }, \qquad x \ne 0, \quad x \ne -1. $$ Given that $ \textrm f(x) $ can be expressed in the form $$ \frac{ A }{ x } + \frac{ B }{ x^2 } + \frac{ C }{ x + 1 }, $$ find the values of $A,B$ and $C$. [4 marks]
(Edexcel 2017 Specifications, P2 Ch1 Exercise 1E Q1.)
Solution.
Question 2. (E) $$ \textrm g(x) = \frac{ - x^2 - 10x - 5 }{ x^2 (x+1) }, \qquad x \ne -1, \quad x \ne 1. $$ Find the values of the constants $D,E$ and $F$ such that $$ \textrm g(x) = \frac{ D }{ x+1 } + \frac{ E }{ (x+1)^2 } + \frac{ F }{ x - 1 }. $$ [4 marks]
(Edexcel 2017 Specifications, P2 Ch1 Exercise 1E Q2.)
Solution.
Question 3. (E) Given that, for $ x < 0 $, $$ \frac{ 2x^2 + 2x - 18 }{ x(x-3)^2 } \equiv \frac{P}{x} + \frac{Q}{x-3} + \frac{R}{(x-3)^2}, $$ where $P,Q$ and $R$ are constants, find the values of $P,Q$ and $R$. [4 marks]
(Edexcel 2017 Specifications, P2 Ch1 Exercise 1E Q3.)
Solution.
Question 4. (E) Show that $$ \frac{ 5x^2 - 2x - 1 }{ x^3 - x^2 } $$ can be written in the form $$ \frac{C}{x} + \frac{D}{x^2} + \frac{E}{x-1}, $$ where $C,D$ and $E$ are constants to be found. [4 marks]
(Edexcel 2017 Specifications, P2 Ch1 Exercise 1E Q4.)
Solution.
Question 5. (E) $$ \textrm p(x) = \frac{ 2x }{ (x+2)^2 }, \qquad x \ne -2. $$ Find the values of the constants $A$ and $B$ such that $$ \textrm p(x) = \frac{A}{x+2} + \frac{B}{(x+2)^2} $$ [4 marks]
(Edexcel 2017 Specifications, P2 Ch1 Exercise 1E Q5.)
Solution.
Hence, we find: $$ A = 2, \qquad B = -4 \qquad \checkmark $$ and the partial fractions read: $$ \Rightarrow \qquad \textrm p(x) = \frac{ 2x }{ (x+2)^2 } \equiv \frac{2}{x+2} - \frac{4}{(x+2)^2} \qquad \checkmark $$
Aside. An alternative way: $$ \begin{align} \textrm p(x) &= \frac{ 2x }{ (x+2)^2 } \\ &= \frac{ 2(x+2-2) }{ (x+2)^2 } \\ &= \frac{ 2(x+2) - 4 }{ (x+2)^2 } \\ &= \frac{ 2 }{ x+2 } - \frac{ 4 }{ (x+2)^2 } \qquad \checkmark \end{align} $$
Question 6. (E) $$ \frac{ 10x^2 - 10x + 17 }{ (2x+1)(x-3)^2 } \equiv \frac{A}{2x+1} + \frac{B}{x-3} + \frac{C}{(x-3)^2}, \qquad x > 3. $$ Find the values of the constants $A,B$ and $C$. [4 marks]
(Edexcel 2017 Specifications, P2 Ch1 Exercise 1E Q6.)
Solution.
Question 7. (E) Show that $$ \frac{ 39x^2 + 2x + 59 }{ (x+5)(3x-1)^2 } $$ can be written in the form $$ \frac{A}{x+5} + \frac{B}{3x-1} + \frac{C}{ (3x-1)^2 }, $$ where $A,B$ and $C$ are constants to be found. [4 marks]
(Edexcel 2017 Specifications, P2 Ch1 Exercise 1E Q7.)
Solution.
Question 8. (P) Express the following as partial fractions: $$ \begin{align} &\textbf{(a)} \qquad \frac{ 4x + 1 }{ x^2 + 10x + 25 } \\ \\ &\textbf{(b)} \qquad \frac{ 6x^2 - x + 2 }{ 4x^3 - 4x^2 + x } \end{align} $$
(Edexcel 2017 Specifications, P2 Ch1 Exercise 1E Q8.)
Solution.
Hence, we find: $$ A = 4, \qquad B = -19 \qquad \checkmark $$ and the partial fractions read: $$ \Rightarrow \qquad \frac{ 4x + 1 }{ x^2 + 10x + 25 } = \frac{ 4x + 1 }{ (x+5)^2 } \equiv \frac{4}{x+5} - \frac{19}{(x+5)^2} \qquad \checkmark $$
Aside. An alternative way: $$ \begin{align} \frac{ 4x + 1 }{ x^2 + 10x + 25 } &= \frac{ 4x + 1 }{ (x+5)^2 } \\ &= \frac{ 4(x+5-5) + 1 }{ (x+5)^2 } \\ &= \frac{ 4(x+5) - 19 }{ (x+5)^2 } \\ &= \frac{ 4 }{ x+5 } - \frac{ 19 }{ (x+5)^2 } \qquad \checkmark \end{align} $$
(b) We factorise the denominator first. $$ \begin{align} 4x^3 - 4x^2 + x &= x \left( 4x^2 - 4x + 1 \right) \\ &= x (2x - 1)^2 \end{align} $$ Let $$ \begin{align} \frac{ 6x^2 - x + 2 }{ 4x^3 - 4x^2 + x } &= \frac{ 6x^2 - x + 2 }{ x (2x - 1)^2 } \\ &\equiv \frac{A}{x} + \frac{B}{ 2x-1 } + \frac{C}{ (2x-1)^2 } \\ &\equiv \frac{ A (2x-1)^2 + B x(2x-1) + C x }{ x (2x - 1)^2 } \end{align} $$ By the method of substitution: $$ \begin{align} \textrm{(i)}&& x &= 0 &&\Rightarrow& A &= 2 \\ \\ \textrm{(ii)}&& x &= \frac12 &&\Rightarrow& \frac{C}{2} &= 6 \left( \frac12 \right)^2 - \left( \frac12 \right) + 2 \\ && & && &&= \frac32 - \frac12 + 2 \\ && & && &&= 3 \\ && & && & C &= 6 \\ \\ \textrm{(ii)}&& x &= 1 &&\Rightarrow& A + B + C &= 6 - 1 + 2 = 7 \\ && & && & B &= 7 - A - C \\ && & && &&= 7 - 2 - 6 \\ && & && &&= -1 \end{align} $$ Hence, we find: $$ A = 2, \qquad B = -1, \qquad C = 6 \qquad \checkmark $$ and the partial fractions read: $$ \Rightarrow \qquad \frac{ 6x^2 - x + 2 }{ 4x^3 - 4x^2 + x } = \frac{ 6x^2 - x + 2 }{ x (2x - 1)^2 } \equiv \frac{2}{x} - \frac{1}{ 2x-1 } + \frac{6}{ (2x-1)^2 } \qquad \checkmark $$
'A-level Mathematics > Pure Mathematics 2' 카테고리의 다른 글
P2 §1.6 Mixed exercise for chapter 1 (0) | 2022.06.28 |
---|---|
P2 §1.5 Algebraic division (0) | 2022.06.28 |
P2 §1.3 Partial fractions (0) | 2022.06.28 |
P2 §1.2 Algebraic fractions (0) | 2022.06.28 |
P2 §1.1 Proof by contradiction (0) | 2022.06.28 |