일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- Weierstrass
- equation
- Partial
- Maths
- GCSE
- a-level
- 교육
- division
- 제도
- College
- 영국
- fractions
- mathematics
- algebraic
- t-치환
- test
- 학년
- Oxford
- Order
- solution
- 적분
- 치환
- integral
- DENOMINATOR
- factors
- Admissions
- factor
- triangle
- differential
- 바이어슈트라스
- Today
- Total
Cambridge Maths Academy
P2 §1.3 Partial fractions 본문
P2 §1.3 Partial fractions
Cambridge Maths Academy 2022. 6. 28. 21:34Pure mathematics Year 2
Table of contents
- Partial fractions
- Examples
- Edexcel P2 Ch1 Exercise 1D
1. Partial fractions
In the previous section, P2 §1.2 Algebraic fractions, we learnt how to add and subtract two (or more) fractions, e.g. $$ \frac{2}{x+3} - \frac{1}{x+1} = \frac{x-1}{(x+3)(x+1)} $$ Now, we can perform the reverse. In other words, a single fraction with two distinct linear factors in the denominator can be split into two separate fractions with linear denominators. $$ \frac{x-1}{(x+3)(x+1)} = \frac{A}{x+3} + \frac{B}{x+1} $$ This reverse process is called 'splitting it into partial fractions'. Note:
- The left-hand side has two linear factors in the denominator.
- The right-hand side is written as the sum of two partial fractions.
- The constants $A$ and $B$ are to be found. There are two methods to find them: by substitution and by equating coefficients.
Note: Partial fractions are used for binomial expansions in P2 §4.3 Using partial fractions, and in integration in P2 §11.7 Partial fractions.
2. Examples
Example 1. Split $$ \frac{ 6x - 2 }{ (x-3)(x+1) } $$ into partial fractions by(a) substitution
(a) equating coefficients.
(Edexcel 2017 Specifications, P2 Ch1 Example 8.)
Solution.
(b) By equating coefficients: $$ A(x+1) + B(x-3) = (A+B)x + (A-3B) = 6x - 2 $$ gives $$ \begin{align} \left\{\begin{array}{lr} A+B = 6 & (1)\\ A-3B = -2 & (2) \end{array}\right. \end{align} $$ (1)-(2) gives $4B = 8$, i.e. $B=2$, and we also find $A=4$. Thus, we obtain: $$ \begin{align} \Rightarrow \qquad \frac{ 6x - 2 }{ (x-3)(x+1) } &= \frac{ 4 }{ x - 3 } + \frac{ 2 }{ x + 1 } \qquad \checkmark \end{align} $$
Example 2. Given that $$ \frac{ 6x^2 + 5x - 2 }{ x(x-1)(2x+1) } \equiv \frac{A}{x} + \frac{B}{x-1} + \frac{C}{2x+1}, $$ find the values of the constants $A,B$ and $C$.
(Edexcel 2017 Specifications, P2 Ch1 Example 9.)
Solution.
3. Edexcel P2 Ch1 Exercise 1D
Question 1. Express the following as partial fractions: $$ \begin{align} &\textbf{(a)} \qquad \frac{ 6x - 2 }{ (x - 2)(x + 3) } \\ \\ &\textbf{(b)} \qquad \frac{ 2x + 11 }{ (x + 1)(x + 4) } \\ \\ &\textbf{(c)} \qquad \frac{ -7x - 12 }{ 2x(x - 4) } \\ \\ &\textbf{(d)} \qquad \frac{ 2x - 13 }{ (2x + 1)(x - 3) } \\ \\ &\textbf{(e)} \qquad \frac{ 6x + 6 }{ (x^2 - 9 } \\ \\ &\textbf{(f)} \qquad \frac{ 7 - 3x }{ x^2 - 3x - 4 } \\ \\ &\textbf{(g)} \qquad \frac{ 8 - x }{ x^2 + 4x } \\ \\ &\textbf{(h)} \qquad \frac{ 2x - 14 }{ x^2 + 2x - 15 } \end{align} $$ [Hint: Factorise the denominator first.]
(Edexcel 2017 Specifications, P2 Ch1 Exercise 1D Q1.)
Solution.
(b) Let $$ \begin{align} \frac{ 2x + 11 }{ (x + 1)(x + 4) } &\equiv \frac{ A }{ x+1 } + \frac{ B }{ x+4 } \\ &= \frac{ A(x+4) + B(x+1) }{ (x + 1)(x + 4) } \end{align} $$ Compare the numerators on both sides: $$ A(x+4) + B(x+1) \equiv 2x + 11. $$ By the method of substitution: $$ \begin{align} \textrm{(i)}&& x &= -1 &&\Rightarrow& 3A&=9 \\ &&&&&\Rightarrow& A&=3 \\ \\ \textrm{(ii)}&& x &= -4 &&\Rightarrow& -3B&= 3 \\ &&&&&\Rightarrow& B&=-1 \end{align} $$ and we obtain: $$ \Rightarrow \qquad \frac{ 2x + 11 }{ (x + 1)(x + 4) } \equiv \frac{ 3 }{ x+1 } - \frac{ 1 }{ x+4 } \qquad \checkmark $$
(c) Let $$ \begin{align} \frac{ -7x - 12 }{ 2x(x-4) } &\equiv \frac{ A }{ 2x } + \frac{ B }{ x-4 } \\ &= \frac{ A(x-4) + 2Bx }{ 2x(x-4) } \end{align} $$ Compare the numerators on both sides: $$ A(x-4) + 2Bx \equiv -7x - 12. $$ By the method of substitution: $$ \begin{align} \textrm{(i)}&& x &= 0 &&\Rightarrow& -4A&=-12 \\ &&&&&\Rightarrow& A&=3 \\ \\ \textrm{(ii)}&& x &= 4 &&\Rightarrow& 8B&=-40 \\ &&&&&\Rightarrow& B&=-5 \end{align} $$ and we obtain: $$ \Rightarrow \qquad \frac{ -7x - 12 }{ 2x(x-4) } \equiv \frac{ 3 }{ 2x } - \frac{ 5 }{ x-4 } \qquad \checkmark $$
(d) Let $$ \begin{align} \frac{ 2x - 13 }{ (2x+1)(x-3) } &\equiv \frac{ A }{ 2x+1 } + \frac{ B }{ x-3 } \\ &= \frac{ A(x-3) + B(2x+1) }{ (2x+1)(x-3) } \end{align} $$ Compare the numerators on both sides: $$ A(x-3) + B(2x+1) \equiv 2x - 13. $$ By the method of substitution: $$ \begin{align} \textrm{(i)}&& x &= -\frac12 &&\Rightarrow& -\frac{7}{2}A&=-14 \\ &&&&&\Rightarrow& A&=4 \\ \\ \textrm{(ii)}&& x &= 3 &&\Rightarrow& 7B&=-7 \\ &&&&&\Rightarrow& B&=-1 \end{align} $$ and we obtain: $$ \Rightarrow \qquad \frac{ 2x - 13 }{ (2x+1)(x-3) } \equiv \frac{ 4 }{ 2x+1 } - \frac{ 1 }{ x-3 } \qquad \checkmark $$
(e) Let $$ \begin{align} \frac{ 6x + 6 }{ x^2 - 9 } &\equiv \frac{ 6x+6 }{ (x+3)(x-3) } \\ &\equiv \frac{ A }{ x+3 } + \frac{ B }{ x-3 } \\ &= \frac{ A(x-3) + B(x+3) }{ (x+3)(x-3) } \end{align} $$ Compare the numerators on both sides: $$ A(x-3) + B(x+3) \equiv 6x + 6. $$ By the method of substitution: $$ \begin{align} \textrm{(i)}&& x &= -3 &&\Rightarrow& -6A&=-12 \\ &&&&&\Rightarrow& A&=2 \\ \\ \textrm{(ii)}&& x &= 3 &&\Rightarrow& 6B&=24 \\ &&&&&\Rightarrow& B&=4 \end{align} $$ and we obtain: $$ \Rightarrow \qquad \frac{ 6x + 6 }{ x^2 - 9 } \equiv \frac{ 6x + 6 }{ (x+3)(x-3) } \equiv \frac{ 2 }{ x+3 } + \frac{ 4 }{ x-3 } \qquad \checkmark $$
(f) Let $$ \begin{align} \frac{ 7 - 3x }{ x^2 - 3x - 4 } &\equiv \frac{ 7 - 3x }{ (x-4)(x+1) } \\ &\equiv \frac{ A }{ x-4 } + \frac{ B }{ x+1 } \\ &= \frac{ A(x+1) + B(x-4) }{ (x+3)(x-3) } \end{align} $$ Compare the numerators on both sides: $$ A(x+1) + B(x-4) \equiv 7 - 3x. $$ By the method of substitution: $$ \begin{align} \textrm{(i)}&& x &= 4 &&\Rightarrow& 5A&=-5 \\ &&&&&\Rightarrow& A&=-1 \\ \\ \textrm{(ii)}&& x &= -1 &&\Rightarrow& -5B&=10 \\ &&&&&\Rightarrow& B&=-2 \end{align} $$ and we obtain: $$ \Rightarrow \qquad \frac{ 7 - 3x }{ x^2 - 3x - 4 } \equiv \frac{ 7 - 3x }{ (x-4)(x+1) } \equiv -\frac{ 1 }{ x-4 } - \frac{ 2 }{ x+1 } \qquad \checkmark $$
(g) Let $$ \begin{align} \frac{ 8 - x }{ x^2 + 4x } &\equiv \frac{ 8 - x }{ x(x+4) } \\ &\equiv \frac{ A }{ x } + \frac{ B }{ x+4 } \\ &= \frac{ A(x+4) + Bx }{ x(x+4) } \end{align} $$ Compare the numerators on both sides: $$ A(x+4) + Bx \equiv 8 - x. $$ By the method of substitution: $$ \begin{align} \textrm{(i)}&& x &= 0 &&\Rightarrow& 4A&=8 \\ &&&&&\Rightarrow& A&=2 \\ \\ \textrm{(ii)}&& x &= -4 &&\Rightarrow& -4B&=12 \\ &&&&&\Rightarrow& B&=-3 \end{align} $$ and we obtain: $$ \Rightarrow \qquad \frac{ 8 - x }{ x^2 + 4x } \equiv \frac{ 8 - x }{ x(x+4) } \equiv \frac{ 2 }{ x } - \frac{ 3 }{ x+4 } \qquad \checkmark $$
(h) Let $$ \begin{align} \frac{ 2x - 14 }{ x^2 + 2x - 15 } &\equiv \frac{ 2x - 14 }{ (x+5)(x-3) } \\ &\equiv \frac{ A }{ x+5 } + \frac{ B }{ x-3 } \\ &= \frac{ A(x-3) + B(x+5) }{ (x+5)(x-3) } \end{align} $$ Compare the numerators on both sides: $$ A(x-3) + B(x+5) \equiv 2x - 14. $$ By the method of substitution: $$ \begin{align} \textrm{(i)}&& x &= -5 &&\Rightarrow& -8A&=-24 \\ &&&&&\Rightarrow& A&=3 \\ \\ \textrm{(ii)}&& x &= 3 &&\Rightarrow& 8B&=-8 \\ &&&&&\Rightarrow& B&=-1 \end{align} $$ and we obtain: $$ \Rightarrow \qquad \frac{ 2x - 14 }{ x^2 + 2x - 15 } \equiv \frac{ 2x - 14 }{ (x+5)(x-3) } \equiv \frac{ 3 }{ x+5 } - \frac{ 1 }{ x-3 } \qquad \checkmark $$
Question 2. (E) Show that $$ \frac{ -2x - 5 }{ (4 + x)(2 - x) } $$ can be written in the form $$ \frac{A}{4+x} + \frac{B}{2-x} $$ where $A$ and $B$ are constants to be found. [3 marks]
(Edexcel 2017 Specifications, P2 Ch1 Exercise 1D Q2.)
Solution.
Question 3. (P) The expression $$ \frac{A}{ (x-4)(x+8) } $$ can be written in partial fractions as $$ \frac{2}{x-4} + \frac{B}{x+8}. $$ Find the values of the constants $A$ and $B$.
(Edexcel 2017 Specifications, P2 Ch1 Exercise 1D Q3.)
Solution.
Question 4. (E) $$ \textrm h(x) = \frac{ 2x^2 - 12x - 26 }{ (x+1) (x-2) (x+5) }, \qquad x > 2 $$ Given that $ \textrm h(x) $ can be expressed in the form $$ \frac{ A }{ x + 1 } + \frac{ B }{ x - 2 } + \frac{ C }{ x + 5 }, $$ find the values of $A,B$ and $C$. [4 marks]
(Edexcel 2017 Specifications, P2 Ch1 Exercise 1D Q4.)
Solution.
Aside 1. Partial fractions read: $$ \Rightarrow \qquad \textrm h(x) = \frac{ 2x^2 - 12x - 26 }{ (x+1) (x-2) (x+5) } \equiv \frac{ 1 }{ x + 1 } - \frac{ 2 }{ x - 2 } + \frac{ 3 }{ x + 5 } \qquad \checkmark $$
Aside 2. One may wonder whether it is valid to use $x=-1,-5$ since it is given that $x>2$. This condition is really there to avoid singularities, i.e. the largest domain would be $$ \{ x \in \mathbb R \; | \; x \ne -1, \; x \ne 2, \; x \ne -5 \}. $$ So the given domain, $x>2$, provides a safe region. Also, the method of substitution works because we only compare the numerators on both sides. If still in doubt, one could try to find $A,B$ and $C$ by equating coefficients as follows. $$ \begin{align} \textrm h(x) = \frac{ 2x^2 - 12x - 26 }{ (x+1) (x-2) (x+5) } &= \frac{ A }{ x + 1 } + \frac{ B }{ x - 2 } + \frac{ C }{ x + 5 } \\ &= \frac{ A (x-2)(x+5) + B (x+1)(x+5) + C (x+1)(x-2) }{ (x+1) (x-2) (x+5) } \\ &= \frac{ A \left( x^2 + 3x - 10 \right) + B \left( x^2 + 6x + 5 \right) + C \left( x^2 - x - 2 \right) }{ (x+1) (x-2) (x+5) } \\ &= \frac{ (A+B+C) x^2 + (3A+6B-C)x + (-10A + 5B - 2C) }{ (x+1) (x-2) (x+5) } \end{align} $$ This yields a set of simultaneous equations: $$ \begin{align} \left\{\begin{array}{l} A+B+C=2 \\ 3A+6B-C=-12 \\ -10A + 5B - 2C=-26 \end{array}\right. \qquad \Rightarrow \qquad \left\{\begin{array}{l} A=1 \\ B=-2 \\ C=3 \end{array}\right. \end{align} $$ so we find the same result.
Question 5. (E) Given that, for $ x < -1 $, $$ \frac{ -10x^2 - 8x + 2 }{ x (2x + 1) (3x - 2) } \equiv \frac{ D }{ x } + \frac{ E }{ 2x + 1 } + \frac{ F }{ 3x - 2 }, $$ where $D,E$ and $F$ are constants. Find the values of $D,E$ and $F$. [4 marks]
(Edexcel 2017 Specifications, P2 Ch1 Exercise 1D Q5.)
Solution.
Aside 1. Partial fractions read: $$ \Rightarrow \qquad \frac{ -10x^2 - 8x + 2 }{ x (2x + 1) (3x - 2) } \equiv -\frac{ 1 }{ x } + \frac{ 2 }{ 2x + 1 } - \frac{ 5 }{ 3x - 2 } \qquad \checkmark $$
Aside 2. One may wonder whether it is valid to use $x=0,-\frac12,\frac23$ since it is given that $x<-1$. This condition is really there to avoid singularities, i.e. the largest domain would be $$ \left\{ x \in \mathbb R \; \bigg| \; x \ne 0, \; x \ne -\frac12, \; x \ne \frac23 \right\}. $$ So the given domain, $x>2$, provides a safe region. Also, the method of substitution works because we only compare the numerators on both sides. If still in doubt, one could try to find $D,E$ and $F$ by equating coefficients as follows. $$ \begin{align} \frac{ -10x^2 - 8x + 2 }{ x (2x + 1) (3x - 2) } &\equiv \frac{ D }{ x } + \frac{ E }{ 2x + 1 } + \frac{ F }{ 3x - 2 } \\ &\equiv \frac{ D (2x + 1) (3x - 2) + E x (3x - 2) + F x (2x + 1) }{ x (2x + 1) (3x - 2) } \\ &\equiv \frac{ D \left( 6x^2 - x - 2 \right) + E \left( 3x^2 - 2x \right) + F \left( 2x^2 + x \right) }{ (x+1) (x-2) (x+5) } \\ &\equiv \frac{ (6D+3E+2F) x^2 + (-D-2E+F)x -2D }{ (x+1) (x-2) (x+5) } \end{align} $$ This yields a set of simultaneous equations: $$ \begin{align} \left\{\begin{array}{l} 6D + 3E + 2F = -10 \\ -D - 2E + F = -8 \\ -2D = 2 \end{array}\right. \qquad \Rightarrow \qquad \left\{\begin{array}{l} D = -1 \\ E = 2 \\ F = -5 \end{array}\right. \end{align} $$ so we find the same result.
Question 6. Express the following as partial fractions: $$ \begin{align} \frac{ -5x^2 - 19x - 32 }{ (x+1) (x+2) (x-5) } \end{align} $$
(Edexcel 2017 Specifications, P2 Ch1 Exercise 1D Q6.)
Solution.
Question 7. (P) Express the following as partial fractions: $$ \begin{align} &\textbf{(a)} \qquad \frac{ 6x^2 + 7x - 3 }{ x^3 - x } \\ \\ &\textbf{(b)} \qquad \frac{ 8x + 9 }{ 10x^2 + 3x - 4 } \end{align} $$ [Hint: Factorise the denominator first.]
(Edexcel 2017 Specifications, P2 Ch1 Exercise 1D Q7.)
Solution.
(b) We factorise the denominator first: $$ \begin{align} 10x^2 + 3x - 4 &= ( 5x + 4) ( 2x - 1) \end{align} $$ and we have: $$ \begin{align} \frac{ 8x + 9 }{ 10x^2 + 3x - 4 } &= \frac{ 8x + 9 }{ ( 5x + 4) ( 2x - 1) } \\ &= \frac{ A }{ 5x + 4 } + \frac{ B }{ 2x - 1 } \\ &= \frac{ A(2x-1) + B(5x+4) }{ ( 5x + 4) ( 2x - 1) } \end{align} $$ Compare the numerators on both sides: $$ A(2x-1) + B(5x+4) \equiv 8x + 9. $$ By the method of substitution: $$ \begin{align} \textrm{(i)}&& x &= -\frac45 &&\Rightarrow& \left( - \frac85 - 1 \right) A &= 8 \left( -\frac45 \right) + 9 \\ &&&&&\Rightarrow& - \frac{13}{5} A &= - \frac{32}{5} + 9 = \frac{13}{5} \\ &&&&&\Rightarrow& A &= -1 \\ \\ \textrm{(ii)}&& x &= \frac12 &&\Rightarrow& \left( \frac52 + 4 \right) B &= 8 \left( \frac12 \right) + 9 \\ &&&&&\Rightarrow& \frac{13}{2} B &= 13 \\ &&&&&\Rightarrow& B &= 2 \end{align} $$ Hence, we obtain: $$ \Rightarrow \qquad \frac{ 8x + 9 }{ 10x^2 + 3x - 4 } = \frac{ 8x + 9 }{ ( 5x + 4) ( 2x - 1) } \\ = - \frac{ 1 }{ 5x + 4 } + \frac{ 2 }{ 2x - 1 } \qquad \checkmark $$
Challenge. Express $$ \frac{ 5x^2 - 15x - 8 }{ x^3 - 4x^2 + x + 6 } $$ as a sum of fractions with linear denominators.
(Edexcel 2017 Specifications, P2 Ch1 Exercise 1D Challenge.)
Solution.
Aside. In this case, we could have obtained all the factors by using factor theorem: $$ \begin{align} \textrm f(2) &= 8 - 16 + 2 + 6 = 0 \qquad \checkmark \\ \textrm f(-2) &= -8 - 16 - 2 + 6 \ne 0 \\ \textrm f(3) &= 27 - 36 + 3 + 6 = 0 \qquad \checkmark \\ \textrm f(-3) &= -27 - 36 - 3 + 6 \ne 0 \end{align} $$
We then have: $$ \begin{align} \frac{ 5x^2 - 15x - 8 }{ x^3 - 4x^2 + x + 6 } &= \frac{ 5x^2 - 15x - 8 }{ (x+1) (x-2) (x-3) } \\ &= \frac{ A }{ x+1 } + \frac{ B }{ x-2 } + \frac{ C }{ x-3 } \\ &= \frac{ A (x-2)(x-3) + B (x+1)(x-3) + C (x+1)(x-2) }{ (x-2) (x-3) (x+1) } \end{align} $$ Compare the numerators on both sides: $$ A (x-2)(x-3) + B (x+1)(x-3) + C (x+1)(x-2) \equiv 5x^2 - 15x - 8. $$ By the method of substitution: $$ \begin{align} \textrm{(i)}&& x &= -1 &&\Rightarrow& (-3)(-4) A &= 5(-1)^2 - 15(-1) - 8 \\ &&&&&\Rightarrow& 12 A &= 5 + 15 - 8 = 12 \\ &&&&&\Rightarrow& A &= 1 \\ \\ \textrm{(ii)}&& x &= 2 &&\Rightarrow& (3)(-1) B &= 5(2)^2 - 15(2) - 8 \\ &&&&&\Rightarrow& -3 B &= 20 - 30 - 8 = - 18 \\ &&&&&\Rightarrow& B &= 6 \\ \\ \textrm{(iii)}&& x &= 3 &&\Rightarrow& (4)(1) C &= 5(3)^2 - 15(3) - 8 \\ &&&&&\Rightarrow& 4 C &= 45 - 45 - 8 = -8 \\ &&&&&\Rightarrow& C &= -2 \end{align} $$ Hence, we obtain: $$ \Rightarrow \qquad \frac{ 5x^2 - 15x - 8 }{ x^3 - 4x^2 + x + 6 } = \frac{ 5x^2 - 15x - 8 }{ (x+1) (x-2) (x-3) } = \frac{ 1 }{ x+1 } + \frac{ 6 }{ x-2 } - \frac{ 2 }{ x-3 } \qquad \checkmark $$
'A-level Mathematics > Pure Mathematics 2' 카테고리의 다른 글
P2 §1.5 Algebraic division (0) | 2022.06.28 |
---|---|
P2 §1.4 Repeated factors (0) | 2022.06.28 |
P2 §1.2 Algebraic fractions (0) | 2022.06.28 |
P2 §1.1 Proof by contradiction (0) | 2022.06.28 |
P2 §1. Algebraic methods (0) | 2022.06.28 |