Cambridge Maths Academy

13. Implicit differentiation and the second order derivatives 본문

수학 모음 (Maths collection)/Technical B - Problem solving

13. Implicit differentiation and the second order derivatives

Cambridge Maths Academy 2021. 3. 3. 22:10
반응형

수학 모음 (Maths collection) 전체보기

 

Question 1. Given x2+y2=r2, show that dydx=xyd2ydx2=r2y3

 

Solution.

더보기

We use implicit differentiation which is an application of chain rule and product rule as we will see here.

x2+y2=r2ddx(x2+y2)=ddxr2ddxx2+ddxy2=02x+dydxddychainruley2=0bychainrule2x+2ydydx=0x+ydydx=0dydx=xy=x±r2x2.

 

For the second derivative, there are two different ways to find it.

 

(i) Method 1: By quotient rule. ddx(uv)=uvuvv2d2ydx2=ddx(xy)=(ddxx)yx(ddxy)y2=yxdydxy2=yx(xy)y2=y+x2yy2=x2+y2y3=r2y3.

 

(ii) Method 2: By implicit differentiation. We start with: x+ydydx=0ddxx+ddx(ydydx)=01+(ddxy)dydx+yd2ydx2productrule=0byproductrule1+(dydx)2+yd2ydx2=01+(dydx)2+yd2ydx2=0yd2ydx2=[1+(dydx)2]=[1+(xy)2]=(1+x2y2)=x2+y2y2=r2y2d2ydx2=r2y3.

 

Question 2. Given x2+4y2=a2, show that dydx=x4yd2ydx2=116y3

 

Solution.

더보기

We use implicit differentiation which is an application of chain rule and product rule as we will see here.

x2+4y2=a2ddx(x2+4y2)=ddxa2ddxx2+ddxy2=02x+dydxddychainrule4y2=0bychainrule2x+8ydydx=0x+4ydydx=0dydx=x4y=x±2a2x2.

 

For the second derivative, there are two different ways to find it.

 

(i) Method 1: By quotient rule. ddx(uv)=uvuvv2d2ydx2=ddx(x4y)=(ddxx)4yx(ddx4y)16y2=yxdydx4y2=yx(x4y)4y2=y+x24y4y2=x2+4y216y3=a216y3.

 

(ii) Method 2: By implicit differentiation. We start with: x+4ydydx=0ddxx+ddx(4ydydx)=01+(ddx4y)dydx+4yd2ydx2productrule=0byproductrule1+4(dydx)2+4yd2ydx2=04yd2ydx2=[1+4(dydx)2]=[1+4(x4y)2]=(1+x24y2)=x2+4y24y2=a24y2d2ydx2=a216y3.

 

Question 3. Given 3x2+y2=a2, show that dydx=3xyd2ydx2=3a2y3

 

Solution.

더보기

We use implicit differentiation which is an application of chain rule and product rule as we will see here.

3x2+y2=a2ddx(3x2+y2)=ddxa2ddx(3x2)+ddxy2=06x+dydxddychainruley2=0bychainrule6x+2ydydx=03x+ydydx=0dydx=3xy.

 

For the second derivative, there are two different ways to find it.

 

(i) Method 1: By quotient rule. ddx(uv)=uvuvv2d2ydx2=ddx(3xy)=(ddx3x)y3x(ddxy)y2=3y3xdydxy2=3[yx(3xy)y2]=3[y+3x2yy2]=3[3x2+y2y3]=3a2y3.

 

(ii) Method 2: By implicit differentiation. We start with: 3x+ydydx=0ddx(3x)+ddx(ydydx)=03+(ddxy)dydx+yd2ydx2productrule=0byproductrule3+(dydx)2+yd2ydx2=03+(dydx)2+yd2ydx2=0yd2ydx2=[3+(dydx)2]=[3+(3xy)2]=(3+9x2y2)=9x2+3y2y2=3a2y2d2ydx2=3a2y3.

 

Question 4. Given x3+y3=a, show that dydx=x2y2d2ydx2=2axy5

 

Solution.

더보기

We use implicit differentiation which is an application of chain rule and product rule as we will see here.

x3+y3=addx(x3+y3)=ddxaddxx3+ddxy3=03x2+dydxddychainruley3=0bychainrule3x2+3y2dydx=03x2+3y2dydx=0dydx=x2y2.

 

For the second derivative, there are two different ways to find it.

 

(i) Method 1: By quotient rule. ddx(uv)=uvuvv2d2ydx2=ddx(x2y2)=(ddxx2)y2x2(ddxy2)y4=2xy22x2ydydxy4=2xy[yx(x2y2)]y4=2x(y3+x3)y5=2axy5.

 

(ii) Method 2: By implicit differentiation. We start with: x2+y2dydx=0ddxx2+ddx(y2dydx)=02x+(ddxy2)dydx+y2d2ydx2productrule=0byproductrule2x+2y(dydx)2+y2d2ydx2=0y2d2ydx2=2[x+y(dydx)2]=2[x+y(x2y2)2]=2(x+x4y3)=2x(x3+y3)y3=2axy3d2ydx2=2axy5.

 

Question 5. Given 8x3+xy2=2y4, show that dydx=24x2+y22y(4y2x)d2ydx2=8y4(96x+1)(4y2x)+2(x12y2)(24x2+y2)28y3(4y2x)3

 

Solution.

더보기

We use implicit differentiation which is an application of chain rule and product rule as we will see here.

8x3+xy2=2y4ddx(8x3)+ddx(xy2)=ddx(2y4)ddx(8x3)+(ddxx)y2+x(ddxy2)productrule=ddx(2y4)24x2+y2+x(dydxddychainruley2)=dydxddychainrule2y424x2+y2+2xydydx=8y3dydx(8y32xy)dydx=24x2+y2dydx=24x2+y28y32xy=24x2+y22y(4y2x).

 

For the second derivative, there are two different ways to find it.

 

(i) Method 1: By quotient rule. ddx(uv)=uvuvv2d2ydx2=ddx(24x2+y28y32xy)=(8y32xy)ddx(24x2+y2)(24x2+y2)ddx(8y32xy)(8y32xy)2=(8y32xy)(48x+dydxddyy2)(24x2+y2)(dydxddy8y32y2xdydx)(8y32xy)2=(8y32xy)(48x+2ydydx)(24x2+y2)(24y2dydx2y2xdydx)(8y32xy)2=48x(8y32xy)+2y(24x2+y2)+[2y(8y32xy)(24y22x)(24x2+y2)]dydx(8y32xy)2=48x(8y32xy)+2y(24x2+y2)+[2y(8y32xy)(24y22x)(24x2+y2)]24x2+y28y32xy(8y32xy)2=48x(8y32xy)+2y(24x2+y2)+2y(24x2+y2)(24y22x)(24x2+y2)24x2+y28y32xy(8y32xy)2=96xy(4y2x)+4y(24x2+y2)(24y22x)(24x2+y2)28y32xy(8y32xy)2=4y[24x(4y2x)+(24x2+y2)](8y32xy)(24y22x)(24x2+y2)2(8y32xy)2=4y(96xy2+y2)(8y32xy)(24y22x)(24x2+y2)2(8y32xy)2=8y4(96x+1)(4y2x)+2(x12y2)(24x2+y2)28y3(4y2x)2. Aside: In order to simplify the expression further, we may look at the original equation or its variations 8x3+xy2=2y4x(8x+y2)=2y4y2(2y2x)=8x3 but none of them seems directly helpful...

 

(ii) Method 2: By implicit differentiation. We start with: (8y32xy)dydx=24x2+y2ddx[(8y32xy)dydx]=ddx(24x2+y2)ddx(8y32xy)(dydx)+(8y32xy)d2ydx2productrule=ddx(24x2)+ddxy2[ddx(8y3)ddx(2xy)](dydx)+(8y32xy)d2ydx2=48x+ddxy2[dydxddychainrule8y3(ddx(2x)y+2xdydx)productrule](dydx)+(8y32xy)d2ydx2=48x+dydxddychainruley2(24y2dydx2y2xdydx)(dydx)+(8y32xy)d2ydx2=48x+2ydydx24y2(dydx)22ydydx2x(dydx)2+(8y32xy)d2ydx2=48x+2ydydx which gives (8y32xy)d2ydx2=48x+4ydydx+(2x24y2)(dydx)2d2ydx2=48x+4ydydx+(2x24y2)(dydx)2(8y32xy)=48x+4y(24x2+y28y32xy)+(2x24y2)(24x2+y28y32xy)2(8y32xy)=48x(8y32xy)2+4y(24x2+y2)(8y32xy)+(2x24y2)(24x2+y2)2(8y32xy)3=4[12x(8y32xy)+y(24x2+y2)](8y32xy)+(2x24y2)(24x2+y2)2(8y32xy)3=4(96xy324x2y+24x2y+y3)(8y32xy)+(2x24y2)(24x2+y2)2(8y32xy)3=4y3(96x+1)(8y32xy)+(2x24y2)(24x2+y2)2(8y32xy)3=8y4(96x+1)(4y2x)+2(x12y2)(24x2+y2)28y3(4y2x)3.

 

Question 6. Given x+y=exy, show that dydx=x+y1x+y+1d2ydx2=2x5y5

 

Solution.

더보기

We use implicit differentiation which is an application of chain rule and product rule as we will see here.

x+y=exeyddx(x+y)=ddx(exey)ddxx+ddxy=eyddxex+exdydxddychainruleeybychainrule1+dydx=eyexexeydydx=exy(1+dydx)(1exy)dydx=exy1dydx=exy1exy+1=exeyex+ey=x+y1x+y+1.

 

For the second derivative, there are two different ways to find it.

 

(i) Method 1: By quotient rule. ddx(uv)=uvuvv2d2ydx2=ddx(x+y1x+y+1)=[ddx(x+y1)](x+y+1)(x+y1)[ddx(x+y+1)](x+y+1)2=(1+dydx)(x+y+1)(x+y1)(1+dydx)(x+y+1)2=2(1+dydx)(x+y+1)2=2(1+x+y1x+y+1)(x+y+1)2=4(x+y)(x+y+1)3.

 

(ii) Method 2: By implicit differentiation. We start with: (x+y+1)dydx=x+y1[ddx(x+y+1)]dydx+(x+y+1)d2ydx2=ddx(x+y1)byproductrule(1+dydx)dydx+(x+y+1)d2ydx2=1+dydx(x+y+1)d2ydx2=(1+dydx)(dydx1)=(1+x+y1x+y+1)(x+y1x+y+11)=2(x+y)2(x+y+1)2=4(x+y)(x+y+1)2d2ydx2=4(x+y)(x+y+1)3.

 

Aside. Alternatively, one could derive d2ydx2 using the exponential expression, (exy+1)dydx=(exy1)
더보기

 

(i) Method 1: By quotient rule. ddx(uv)=uvuvv2d2ydx2=ddx(exeyex+ey)=[ddx(exey)](ex+ey)(exey)[ddx(ex+ey)](ex+ey)2=(exeydydx)(ex+ey)(exey)(ex+eydydx)(ex+ey)2=ex(ex+ey)(ex+ey)eydydx(exey)ex(exey)eydydx(ex+ey)2=2ex+y2ex+ydydx(ex+ey)2=(1dydx)2ex+y(ex+ey)2=(1exeyex+ey)2ex+y(ex+ey)2=[(ex+ey)(exey)ex+ey]2ex+y(ex+ey)2=[2eyex+ey]2ex+y(ex+ey)2=4ex+2y(ex+ey)3=4exy(exy+1)3=4(x+y)(x+y+1)3.

 

(ii) Method 2: By implicit differentiation. We start with: (exy+1)dydx=exy1ddx(exy+1)dydx+(exy+1)d2ydx2=ddx(exy1)exy(1dydx)dydx+(exy+1)d2ydx2=exy(1dydx)(exy+1)d2ydx2=exy(1dydx)(dydx1)=exy(1exeyex+ey)(exeyex+ey1)=exy(2eyex+ey)(2eyex+ey)=4exy[e2y(ex+ey)2]=4exy(exy+1)2d2ydx2=4exy(exy+1)3=4(x+y)(x+y+1)3.

 

Question 7. Given xn+yn=1, show that dydx=xn1yn1d2ydx2=(n1)xn2y2n1

 

Solution.

더보기

We use implicit differentiation which is an application of chain rule and product rule as we will see here.

xn+yn=1ddx(xn+yn)=ddx1ddxxn+ddxyn=0nxn1+dydxddychainruleyn=0bychainrulenxn1+nyn1dydx=0xn1+yn1dydx=0sincen0dydx=xn1yn1

 

For the second derivative, there are two different ways to find it.

 

(i) Method 1: By quotient rule. ddx(uv)=uvuvv2d2ydx2=ddx(xn1yn1)=(ddxxn1)yn1xn1(ddxyn1)(yn)2=(n1)xn2yn1xn1[chainruledydxddyyn1]y2n2=(n1)xn2yn1xn1[(n1)yn2dydx]y2n2=(n1)xn2yn1(n1)xn1yn2dydxy2n2=(n1)xn2yn1(1xydydx)y2n2=(n1)xn2yn1[1xy(xn1yn1)]y2n2=(n1)xn2yn1(1+xnyn)y2n2=(n1)xn2yn1(yn+xnyn)y2n2=(n1)xn21yy2n2sincexn+yn=1=(n1)xn2y2n1.

 

(ii) Method 2: By implicit differentiation. We start with: xn1+yn1dydx=0ddxxn1+ddx(yn1dydx)=0(n1)xn2+(ddxyn1)+yn1d2ydx2productrule=0byproductrule(n1)xn2+dydxddychainruleyn1+yn1d2ydx2=0bychainrule(n1)xn2+(n1)yn2(dydx)2+yn1d2ydx2=0yn1d2ydx2=(n1)[xn2+yn2(dydx)2]=(n1)[xn2+yn2(xn1yn1)2]=(n1)(xn2+yn2x2n2y2n2)=(n1)(xn2+x2n2yn)=(n1)xn2(1+xnyn)=(n1)xn2(xn+ynyn)=(n1)xn2ynsincexn+yn=1d2ydx2=(n1)xn2y2n1.

 

Question 8. Given axm+byn=crk, show that dydx=(ambn)xm1yn1d2ydx2=(ambn)[(m1)yn+(ambn)(n1)xm]xm2y2n1

 

Solution.

더보기

We use implicit differentiation which is an application of chain rule and product rule as we will see here.

axm+byn=crkddx(axm+byn)=ddx(crk)addxxm+bddxyn=0amxm1+bdydxddychainruleyn=0bychainruleamxm1+bnyn1dydx=0amxm1+bnyn1dydx=0dydx=(ambn)xm1yn1.

 

For the second derivative, there are two different ways to find it.

 

(i) Method 1: By quotient rule. ddx(uv)=uvuvv2d2ydx2=(ambn)ddx(xm1yn1)=(ambn)(ddxxm1)yn1xm1(ddxyn1)y2(n1)=(ambn)(m1)xm2yn1(n1)xm1yn2dydxy2(n1)=(ambn)[(m1)y(n1)x(ambnxm1yn1)]xm2yn2y2(n1)=(ambn)[(m1)yn+(ambn)(n1)xm]xm2yn2yn1y2(n1)=(ambn)[(m1)yn+(ambn)(n1)xm]xm2y2n1.

 

(ii) Method 2: By implicit differentiation. We start with: amxm1+bnyn1dydx=0amddxxm1+bnddx(yn1dydx)=0am(m1)xm2+bn(ddxyn1)dydx+bnyn1d2ydx2productrule=0byproductruleam(m1)xm2+bn(n1)yn2(dydx)2+bnyn1d2ydx2=0 bnyn1d2ydx2=[am(m1)xm2+bn(n1)yn2(dydx)2]=[am(m1)xm2+bn(n1)yn2(ambnxm1yn1)2]=[am(m1)xm2+bn(n1)yn2(ambn)2x2(m1)y2(n1)]=[am(m1)xm2+bn(n1)(ambn)2x2(m1)yn]=[am(m1)yn+bn(n1)(ambn)2xm]xm2yn=(ambn)[bn(m1)yn+am(n1)xm]xm2ynd2ydx2=(ambn)[(m1)yn+(ambn)(n1)xm]xm2y2n1

 

Check. For m=n, i.e. axn+byn=crk dydx=(ab)xn1yn1d2ydx2=(ab)(n1)[yn+(ab)xn]xn2y2n1 In addition, if a=b, i.e. xn+yn=cark dydx=xn1yn1d2ydx2=(n1)(xn+yn)xn2y2n1=(n1)(cark)xn2y2n1
반응형
Comments