일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 |
- Weierstrass
- 제도
- Maths
- 적분
- algebraic
- solution
- 치환
- 교육
- integral
- differential
- Oxford
- triangle
- DENOMINATOR
- Partial
- College
- Admissions
- division
- Order
- equation
- test
- 바이어슈트라스
- a-level
- 학년
- factor
- mathematics
- 영국
- fractions
- GCSE
- factors
- t-치환
- Today
- Total
Cambridge Maths Academy
13. Implicit differentiation and the second order derivatives 본문
13. Implicit differentiation and the second order derivatives
Cambridge Maths Academy 2021. 3. 3. 22:10수학 모음 (Maths collection) 전체보기
Question 1. Given x2+y2=r2, show that dydx=−xyd2ydx2=−r2y3
Solution.
We use implicit differentiation which is an application of chain rule and product rule as we will see here.
x2+y2=r2⇒ddx(x2+y2)=ddxr2⇒ddxx2+ddxy2=0⇒2x+dydxddy⏟chainruley2=0bychainrule⇒2x+2ydydx=0⇒x+ydydx=0⇒dydx=−xy=−x±√r2−x2.◻
For the second derivative, there are two different ways to find it.
(i) Method 1: By quotient rule. ddx(uv)=u′v−uv′v2⇒d2ydx2=ddx(−xy)=−(ddxx)y−x(ddxy)y2=−y−xdydxy2=−y−x(−xy)y2=−y+x2yy2=−x2+y2y3=−r2y3.◻
(ii) Method 2: By implicit differentiation. We start with: x+ydydx=0⇒ddxx+ddx(ydydx)=0⇒1+(ddxy)dydx+yd2ydx2⏟productrule=0byproductrule⇒1+(dydx)2+yd2ydx2=0⇒1+(dydx)2+yd2ydx2=0⇒yd2ydx2=−[1+(dydx)2]=−[1+(−xy)2]=−(1+x2y2)=−x2+y2y2=−r2y2⇒d2ydx2=−r2y3.◻
Question 2. Given x2+4y2=a2, show that dydx=−x4yd2ydx2=−116y3
Solution.
We use implicit differentiation which is an application of chain rule and product rule as we will see here.
x2+4y2=a2⇒ddx(x2+4y2)=ddxa2⇒ddxx2+ddxy2=0⇒2x+dydxddy⏟chainrule4y2=0bychainrule⇒2x+8ydydx=0⇒x+4ydydx=0⇒dydx=−x4y=−x±2√a2−x2.◻
For the second derivative, there are two different ways to find it.
(i) Method 1: By quotient rule. ddx(uv)=u′v−uv′v2⇒d2ydx2=ddx(−x4y)=−(ddxx)4y−x(ddx4y)16y2=−y−xdydx4y2=−y−x(−x4y)4y2=−y+x24y4y2=−x2+4y216y3=−a216y3.◻
(ii) Method 2: By implicit differentiation. We start with: x+4ydydx=0⇒ddxx+ddx(4ydydx)=0⇒1+(ddx4y)dydx+4yd2ydx2⏟productrule=0byproductrule⇒1+4(dydx)2+4yd2ydx2=0⇒4yd2ydx2=−[1+4(dydx)2]=−[1+4(−x4y)2]=−(1+x24y2)=−x2+4y24y2=−a24y2⇒d2ydx2=−a216y3.◻
Question 3. Given 3x2+y2=a2, show that dydx=−3xyd2ydx2=−3a2y3
Solution.
We use implicit differentiation which is an application of chain rule and product rule as we will see here.
3x2+y2=a2⇒ddx(3x2+y2)=ddxa2⇒ddx(3x2)+ddxy2=0⇒6x+dydxddy⏟chainruley2=0bychainrule⇒6x+2ydydx=0⇒3x+ydydx=0⇒dydx=−3xy.◻
For the second derivative, there are two different ways to find it.
(i) Method 1: By quotient rule. ddx(uv)=u′v−uv′v2⇒d2ydx2=ddx(−3xy)=−(ddx3x)y−3x(ddxy)y2=−3y−3xdydxy2=−3[y−x(−3xy)y2]=−3[y+3x2yy2]=−3[3x2+y2y3]=−3a2y3.◻
(ii) Method 2: By implicit differentiation. We start with: 3x+ydydx=0⇒ddx(3x)+ddx(ydydx)=0⇒3+(ddxy)dydx+yd2ydx2⏟productrule=0byproductrule⇒3+(dydx)2+yd2ydx2=0⇒3+(dydx)2+yd2ydx2=0⇒yd2ydx2=−[3+(dydx)2]=−[3+(−3xy)2]=−(3+9x2y2)=−9x2+3y2y2=−3a2y2⇒d2ydx2=−3a2y3.◻
Question 4. Given x3+y3=a, show that dydx=−x2y2d2ydx2=−2axy5
Solution.
We use implicit differentiation which is an application of chain rule and product rule as we will see here.
x3+y3=a⇒ddx(x3+y3)=ddxa⇒ddxx3+ddxy3=0⇒3x2+dydxddy⏟chainruley3=0bychainrule⇒3x2+3y2dydx=0⇒3x2+3y2dydx=0⇒dydx=−x2y2.◻
For the second derivative, there are two different ways to find it.
(i) Method 1: By quotient rule. ddx(uv)=u′v−uv′v2⇒d2ydx2=ddx(−x2y2)=−(ddxx2)y2−x2(ddxy2)y4=−2xy2−2x2ydydxy4=−2xy[y−x(−x2y2)]y4=−2x(y3+x3)y5=−2axy5.◻
(ii) Method 2: By implicit differentiation. We start with: x2+y2dydx=0⇒ddxx2+ddx(y2dydx)=0⇒2x+(ddxy2)dydx+y2d2ydx2⏟productrule=0byproductrule⇒2x+2y(dydx)2+y2d2ydx2=0⇒y2d2ydx2=−2[x+y(dydx)2]=−2[x+y(−x2y2)2]=−2(x+x4y3)=−2x(x3+y3)y3=−2axy3⇒d2ydx2=−2axy5.◻
Question 5. Given 8x3+xy2=2y4, show that dydx=24x2+y22y(4y2−x)d2ydx2=8y4(96x+1)(4y2−x)+2(x−12y2)(24x2+y2)28y3(4y2−x)3
Solution.
We use implicit differentiation which is an application of chain rule and product rule as we will see here.
8x3+xy2=2y4⇒ddx(8x3)+ddx(xy2)=ddx(2y4)⇒ddx(8x3)+(ddxx)y2+x(ddxy2)⏟productrule=ddx(2y4)⇒24x2+y2+x(dydxddy⏟chainruley2)=dydxddy⏟chainrule2y4⇒24x2+y2+2xydydx=8y3dydx⇒(8y3−2xy)dydx=24x2+y2⇒dydx=24x2+y28y3−2xy=24x2+y22y(4y2−x).◻
For the second derivative, there are two different ways to find it.
(i) Method 1: By quotient rule. ddx(uv)=u′v−uv′v2d2ydx2=ddx(24x2+y28y3−2xy)=(8y3−2xy)ddx(24x2+y2)−(24x2+y2)ddx(8y3−2xy)(8y3−2xy)2=(8y3−2xy)(48x+dydxddyy2)−(24x2+y2)(dydxddy8y3−2y−2xdydx)(8y3−2xy)2=(8y3−2xy)(48x+2ydydx)−(24x2+y2)(24y2dydx−2y−2xdydx)(8y3−2xy)2=48x(8y3−2xy)+2y(24x2+y2)+[2y(8y3−2xy)−(24y2−2x)(24x2+y2)]dydx(8y3−2xy)2=48x(8y3−2xy)+2y(24x2+y2)+[2y(8y3−2xy)−(24y2−2x)(24x2+y2)]24x2+y28y3−2xy(8y3−2xy)2=48x(8y3−2xy)+2y(24x2+y2)+2y(24x2+y2)−(24y2−2x)(24x2+y2)24x2+y28y3−2xy(8y3−2xy)2=96xy(4y2−x)+4y(24x2+y2)−(24y2−2x)(24x2+y2)28y3−2xy(8y3−2xy)2=4y[24x(4y2−x)+(24x2+y2)](8y3−2xy)−(24y2−2x)(24x2+y2)2(8y3−2xy)2=4y(96xy2+y2)(8y3−2xy)−(24y2−2x)(24x2+y2)2(8y3−2xy)2=8y4(96x+1)(4y2−x)+2(x−12y2)(24x2+y2)28y3(4y2−x)2.◻ Aside: In order to simplify the expression further, we may look at the original equation or its variations 8x3+xy2=2y4⇔x(8x+y2)=2y4⇔y2(2y2−x)=8x3 but none of them seems directly helpful...
(ii) Method 2: By implicit differentiation. We start with: (8y3−2xy)dydx=24x2+y2⇒ddx[(8y3−2xy)dydx]=ddx(24x2+y2)⇒ddx(8y3−2xy)(dydx)+(8y3−2xy)d2ydx2⏟productrule=ddx(24x2)+ddxy2⇒[ddx(8y3)−ddx(2xy)](dydx)+(8y3−2xy)d2ydx2=48x+ddxy2⇒[dydxddy⏟chainrule8y3−(ddx(2x)y+2xdydx)⏟productrule](dydx)+(8y3−2xy)d2ydx2=48x+dydxddy⏟chainruley2⇒(24y2dydx−2y−2xdydx)(dydx)+(8y3−2xy)d2ydx2=48x+2ydydx⇒24y2(dydx)2−2ydydx−2x(dydx)2+(8y3−2xy)d2ydx2=48x+2ydydx which gives ⇒(8y3−2xy)d2ydx2=48x+4ydydx+(2x−24y2)(dydx)2⇒d2ydx2=48x+4ydydx+(2x−24y2)(dydx)2(8y3−2xy)=48x+4y(24x2+y28y3−2xy)+(2x−24y2)(24x2+y28y3−2xy)2(8y3−2xy)=48x(8y3−2xy)2+4y(24x2+y2)(8y3−2xy)+(2x−24y2)(24x2+y2)2(8y3−2xy)3=4[12x(8y3−2xy)+y(24x2+y2)](8y3−2xy)+(2x−24y2)(24x2+y2)2(8y3−2xy)3=4(96xy3−24x2y+24x2y+y3)(8y3−2xy)+(2x−24y2)(24x2+y2)2(8y3−2xy)3=4y3(96x+1)(8y3−2xy)+(2x−24y2)(24x2+y2)2(8y3−2xy)3=8y4(96x+1)(4y2−x)+2(x−12y2)(24x2+y2)28y3(4y2−x)3.◻
Question 6. Given x+y=ex−y, show that dydx=x+y−1x+y+1d2ydx2=−2x5y5
Solution.
We use implicit differentiation which is an application of chain rule and product rule as we will see here.
x+y=exe−y⇒ddx(x+y)=ddx(exe−y)⇒ddxx+ddxy=e−yddxex+exdydxddy⏟chainrulee−ybychainrule⇒1+dydx=e−yex−exe−ydydx=ex−y(1+dydx)⇒(1−ex−y)dydx=ex−y−1⇒dydx=ex−y−1ex−y+1=ex−eyex+ey=x+y−1x+y+1.◻
For the second derivative, there are two different ways to find it.
(i) Method 1: By quotient rule. ddx(uv)=u′v−uv′v2⇒d2ydx2=ddx(x+y−1x+y+1)=−[ddx(x+y−1)](x+y+1)−(x+y−1)[ddx(x+y+1)](x+y+1)2=−(1+dydx)(x+y+1)−(x+y−1)(1+dydx)(x+y+1)2=−2(1+dydx)(x+y+1)2=−2(1+x+y−1x+y+1)(x+y+1)2=−4(x+y)(x+y+1)3.◻
(ii) Method 2: By implicit differentiation. We start with: (x+y+1)dydx=x+y−1⇒[ddx(x+y+1)]dydx+(x+y+1)d2ydx2=ddx(x+y−1)byproductrule⇒(1+dydx)dydx+(x+y+1)d2ydx2=1+dydx⇒(x+y+1)d2ydx2=(1+dydx)(dydx−1)=(1+x+y−1x+y+1)(x+y−1x+y+1−1)=2(x+y)⋅2(x+y+1)2=4(x+y)(x+y+1)2⇒d2ydx2=4(x+y)(x+y+1)3.◻
Aside. Alternatively, one could derive d2ydx2 using the exponential expression, (ex−y+1)dydx=(ex−y−1)
(i) Method 1: By quotient rule. ddx(uv)=u′v−uv′v2⇒d2ydx2=ddx(ex−eyex+ey)=−[ddx(ex−ey)](ex+ey)−(ex−ey)[ddx(ex+ey)](ex+ey)2=−(ex−eydydx)(ex+ey)−(ex−ey)(ex+eydydx)(ex+ey)2=−ex(ex+ey)−(ex+ey)eydydx−(ex−ey)ex−(ex−ey)eydydx(ex+ey)2=−2ex+y−2ex+ydydx(ex+ey)2=−(1−dydx)2ex+y(ex+ey)2=−(1−ex−eyex+ey)2ex+y(ex+ey)2=−[(ex+ey)−(ex−ey)ex+ey]2ex+y(ex+ey)2=−[2eyex+ey]2ex+y(ex+ey)2=−4ex+2y(ex+ey)3=−4ex−y(ex−y+1)3=−4(x+y)(x+y+1)3.◻
(ii) Method 2: By implicit differentiation. We start with: (ex−y+1)dydx=ex−y−1⇒ddx(ex−y+1)dydx+(ex−y+1)d2ydx2=ddx(ex−y−1)⇒ex−y(1−dydx)dydx+(ex−y+1)d2ydx2=ex−y(1−dydx)⇒(ex−y+1)d2ydx2=ex−y(1−dydx)(dydx−1)=ex−y(1−ex−eyex+ey)(ex−eyex+ey−1)=ex−y(2eyex+ey)(−2eyex+ey)=−4ex−y[e2y(ex+ey)2]=−4ex−y(ex−y+1)2⇒d2ydx2=−4ex−y(ex−y+1)3=−4(x+y)(x+y+1)3.◻
Question 7. Given xn+yn=1, show that dydx=−xn−1yn−1d2ydx2=−(n−1)xn−2y2n−1
Solution.
We use implicit differentiation which is an application of chain rule and product rule as we will see here.
xn+yn=1⇒ddx(xn+yn)=ddx1⇒ddxxn+ddxyn=0⇒nxn−1+dydxddy⏟chainruleyn=0bychainrule⇒nxn−1+nyn−1dydx=0⇒xn−1+yn−1dydx=0sincen≠0⇒dydx=−xn−1yn−1
For the second derivative, there are two different ways to find it.
(i) Method 1: By quotient rule. ddx(uv)=u′v−uv′v2⇒d2ydx2=ddx(−xn−1yn−1)=−(ddxxn−1)yn−1−xn−1(ddxyn−1)(yn−)2=−(n−1)xn−2yn−1−xn−1[chainrule⏞dydxddyyn−1]y2n−2=−(n−1)xn−2yn−1−xn−1[(n−1)yn−2dydx]y2n−2=−(n−1)xn−2yn−1−(n−1)xn−1yn−2dydxy2n−2=−(n−1)xn−2yn−1(1−xydydx)y2n−2=−(n−1)xn−2yn−1[1−xy(−xn−1yn−1)]y2n−2=−(n−1)xn−2yn−1(1+xnyn)y2n−2=−(n−1)xn−2yn−1(yn+xnyn)y2n−2=−(n−1)xn−21yy2n−2sincexn+yn=1=−(n−1)xn−2y2n−1.◻
(ii) Method 2: By implicit differentiation. We start with: xn−1+yn−1dydx=0⇒ddxxn−1+ddx(yn−1dydx)=0⇒(n−1)xn−2+(ddxyn−1)+yn−1d2ydx2⏟productrule=0byproductrule⇒(n−1)xn−2+dydxddy⏟chainruleyn−1+yn−1d2ydx2=0bychainrule⇒(n−1)xn−2+(n−1)yn−2(dydx)2+yn−1d2ydx2=0⇒yn−1d2ydx2=−(n−1)[xn−2+yn−2(dydx)2]=−(n−1)[xn−2+yn−2(−xn−1yn−1)2]=−(n−1)(xn−2+yn−2x2n−2y2n−2)=−(n−1)(xn−2+x2n−2yn)=−(n−1)xn−2(1+xnyn)=−(n−1)xn−2(xn+ynyn)=−(n−1)xn−2ynsincexn+yn=1⇒d2ydx2=−(n−1)xn−2y2n−1.◻
Question 8. Given axm+byn=crk, show that dydx=−(ambn)xm−1yn−1d2ydx2=−(ambn)[(m−1)yn+(ambn)(n−1)xm]xm−2y2n−1
Solution.
We use implicit differentiation which is an application of chain rule and product rule as we will see here.
axm+byn=crk⇒ddx(axm+byn)=ddx(crk)⇒addxxm+bddxyn=0⇒amxm−1+bdydxddy⏟chainruleyn=0bychainrule⇒amxm−1+bnyn−1dydx=0⇒amxm−1+bnyn−1dydx=0⇒dydx=−(ambn)xm−1yn−1.◻
For the second derivative, there are two different ways to find it.
(i) Method 1: By quotient rule. ddx(uv)=u′v−uv′v2⇒d2ydx2=−(ambn)ddx(xm−1yn−1)=−(ambn)(ddxxm−1)yn−1−xm−1(ddxyn−1)y2(n−1)=−(ambn)(m−1)xm−2yn−1−(n−1)xm−1yn−2dydxy2(n−1)=−(ambn)[(m−1)y−(n−1)x(−ambnxm−1yn−1)]xm−2yn−2y2(n−1)=−(ambn)[(m−1)yn+(ambn)(n−1)xm]xm−2yn−2yn−1y2(n−1)=−(ambn)[(m−1)yn+(ambn)(n−1)xm]xm−2y2n−1.◻
(ii) Method 2: By implicit differentiation. We start with: amxm−1+bnyn−1dydx=0⇒amddxxm−1+bnddx(yn−1dydx)=0⇒am(m−1)xm−2+bn(ddxyn−1)dydx+bnyn−1d2ydx2⏟productrule=0byproductrule⇒am(m−1)xm−2+bn(n−1)yn−2(dydx)2+bnyn−1d2ydx2=0 ⇒bnyn−1d2ydx2=−[am(m−1)xm−2+bn(n−1)yn−2(dydx)2]=−[am(m−1)xm−2+bn(n−1)yn−2(−ambnxm−1yn−1)2]=−[am(m−1)xm−2+bn(n−1)yn−2(ambn)2x2(m−1)y2(n−1)]=−[am(m−1)xm−2+bn(n−1)(ambn)2x2(m−1)yn]=−[am(m−1)yn+bn(n−1)(ambn)2xm]xm−2yn=−(ambn)[bn(m−1)yn+am(n−1)xm]xm−2yn⇒d2ydx2=−(ambn)[(m−1)yn+(ambn)(n−1)xm]xm−2y2n−1◻
Check. For m=n, i.e. axn+byn=crk dydx=−(ab)xn−1yn−1d2ydx2=−(ab)(n−1)[yn+(ab)xn]xn−2y2n−1 In addition, if a=b, i.e. xn+yn=cark dydx=−xn−1yn−1✓d2ydx2=−(n−1)(xn+yn)xn−2y2n−1=−(n−1)(cark)xn−2y2n−1✓
'수학 모음 (Maths collection) > Technical B - Problem solving' 카테고리의 다른 글
11. A problem on coordinate geometry (GCSE) (0) | 2021.02.27 |
---|---|
10. A challenging geometry question (STEP level) (0) | 2021.01.26 |
9. Three cards with an even score (GCSE) (0) | 2021.01.14 |
8. Some integrals (0) | 2020.12.31 |
7. Differentiation - Some inverse trigonometric functions (0) | 2020.12.31 |