일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 |
Tags
- algebraic
- triangle
- mathematics
- factors
- t-치환
- fractions
- Oxford
- 바이어슈트라스
- 제도
- integral
- 학년
- test
- College
- factor
- Order
- division
- Partial
- 적분
- GCSE
- 치환
- equation
- 영국
- Admissions
- DENOMINATOR
- a-level
- solution
- Maths
- Weierstrass
- 교육
- differential
Archives
- Today
- Total
Cambridge Maths Academy
7. Differentiation - Some inverse trigonometric functions 본문
수학 모음 (Maths collection)/Technical B - Problem solving
7. Differentiation - Some inverse trigonometric functions
Cambridge Maths Academy 2020. 12. 31. 00:19반응형
수학 모음 (Maths collection) 전체보기
Question. Find dydx for: (a)y=arcsin(1−2x)(b)y=arctan(x2+1)
Solution. (a) For y=arcsin(1−2x), we have −1≤1−2x≤1−π2≤y≤π2 We re-express the equation y=arcsin(1−2x)⇒1−2x=siny. By implicit differentiation ddy(1−2x)=ddysiny⇒−2dxdy=cosy=√1−sin2y(for−π2≤y≤π2)=√1−(1−2x)2=√4x−4x2=2√x(1−x)⇒dxdy=−√x(1−x)⇒dydx=1dxdy=−2√1−(1−2x)2=−1√x(1−x)
(b) For y=arctan(x2+1), we have −∞≤x2+1≤∞−π2≤y≤π2 We re-express the equation y=arctan(x2+1)⇒x2+1=tany By chain rule, ddx(x2+1)=ddxtany⇒2x=dydxddytany=dydxsec2y=dydx(1+tan2y)=dydx[1+(x2+1)2]⇒dydx=2x1+(x2+1)2=2xx4+2x2+2
반응형
'수학 모음 (Maths collection) > Technical B - Problem solving' 카테고리의 다른 글
9. Three cards with an even score (GCSE) (0) | 2021.01.14 |
---|---|
8. Some integrals (0) | 2020.12.31 |
6. Probability - Jumping goldfish (GCSE) (0) | 2020.12.29 |
5. A counting problem - Lucy & Anton in the photo (GCSE) (0) | 2020.12.29 |
4. A question on logarithms (Eton College 01C_MT1 Q16) (0) | 2020.12.09 |