일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | |||||
3 | 4 | 5 | 6 | 7 | 8 | 9 |
10 | 11 | 12 | 13 | 14 | 15 | 16 |
17 | 18 | 19 | 20 | 21 | 22 | 23 |
24 | 25 | 26 | 27 | 28 | 29 | 30 |
- a-level
- College
- t-치환
- 제도
- DENOMINATOR
- GCSE
- solution
- 치환
- mathematics
- 학년
- factors
- integral
- Order
- Oxford
- test
- 영국
- equation
- Maths
- 적분
- Weierstrass
- differential
- fractions
- 교육
- triangle
- 바이어슈트라스
- factor
- division
- Partial
- algebraic
- Admissions
- Today
- Total
Cambridge Maths Academy
7. Differentiation - Some inverse trigonometric functions 본문
7. Differentiation - Some inverse trigonometric functions
Cambridge Maths Academy 2020. 12. 31. 00:19수학 모음 (Maths collection) 전체보기
Question. Find $\frac{dy}{dx}$ for: $$ \begin{align} \textrm{(a)}&\qquad y = \arcsin(1-2x) \\ \textrm{(b)}&\qquad y = \arctan\left(x^2+1\right) \end{align} $$
Solution. (a) For $y=\arcsin(1-2x)$, we have $$ \begin{gather} -1\le 1-2x \le 1 \\ -\frac{\pi}{2}\le y \le\frac{\pi}{2} \end{gather} $$ We re-express the equation $$ \begin{align} y&=\arcsin(1-2x) \\ \Rightarrow\quad 1-2x&=\sin y. \end{align} $$ By implicit differentiation $$ \begin{align} \frac{d}{dy}(1-2x)&=\frac{d}{dy}\sin y \\ \Rightarrow\quad -2\frac{dx}{dy}&=\cos y \\ &=\sqrt{1-\sin^2y}\qquad\left({\rm for}\quad -\frac{\pi}{2}\le y \le\frac{\pi}{2}\right) \\ &=\sqrt{1-(1-2x)^2} \\ &=\sqrt{4x-4x^2} \\ &=2\sqrt{x(1-x)} \\ \Rightarrow\quad \frac{dx}{dy}&=-\sqrt{x(1-x)} \\ \\ \Rightarrow\quad \frac{dy}{dx}&=\frac{1}{\frac{dx}{dy}} =-\frac{2}{\sqrt{1-(1-2x)^2}} =-\frac1{\sqrt{x(1-x)}} \end{align} $$
(b) For $y=\arctan\left(x^2+1\right)$, we have $$ \begin{gather} -\infty\le x^2+1 \le \infty \\ -\frac{\pi}{2}\le y \le\frac{\pi}{2} \end{gather} $$ We re-express the equation $$ \begin{align} y&=\arctan\left(x^2+1\right) \\ \Rightarrow\quad x^2+1&=\tan y \end{align} $$ By chain rule, $$ \begin{align} \frac{d}{dx}\left(x^2+1\right)&=\frac{d}{dx}\tan y \\ \Rightarrow\quad 2x&=\frac{dy}{dx}\frac{d}{dy}\tan y \\ &=\frac{dy}{dx}\sec^2 y \\ &=\frac{dy}{dx}\left(1+\tan^2y\right) \\ &=\frac{dy}{dx}\left[1+\left(x^2+1\right)^2\right] \\ \\ \Rightarrow\quad \frac{dy}{dx}&=\frac{2x}{1+\left(x^2+1\right)^2}=\frac{2x}{x^4+2x^2+2} \end{align} $$
'수학 모음 (Maths collection) > Technical B - Problem solving' 카테고리의 다른 글
9. Three cards with an even score (GCSE) (0) | 2021.01.14 |
---|---|
8. Some integrals (0) | 2020.12.31 |
6. Probability - Jumping goldfish (GCSE) (0) | 2020.12.29 |
5. A counting problem - Lucy & Anton in the photo (GCSE) (0) | 2020.12.29 |
4. A question on logarithms (Eton College 01C_MT1 Q16) (0) | 2020.12.09 |