Cambridge Maths Academy

7. Differentiation - Some inverse trigonometric functions 본문

수학 모음 (Maths collection)/Technical B - Problem solving

7. Differentiation - Some inverse trigonometric functions

Cambridge Maths Academy 2020. 12. 31. 00:19
반응형

수학 모음 (Maths collection) 전체보기

 

Question. Find dydx for: (a)y=arcsin(12x)(b)y=arctan(x2+1)

 

Solution. (a) For y=arcsin(12x), we have 112x1π2yπ2 We re-express the equation y=arcsin(12x)12x=siny. By implicit differentiation ddy(12x)=ddysiny2dxdy=cosy=1sin2y(forπ2yπ2)=1(12x)2=4x4x2=2x(1x)dxdy=x(1x)dydx=1dxdy=21(12x)2=1x(1x)

 


 

(b) For y=arctan(x2+1), we have x2+1π2yπ2 We re-express the equation y=arctan(x2+1)x2+1=tany By chain rule, ddx(x2+1)=ddxtany2x=dydxddytany=dydxsec2y=dydx(1+tan2y)=dydx[1+(x2+1)2]dydx=2x1+(x2+1)2=2xx4+2x2+2

반응형
Comments