일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 |
- Partial
- 학년
- integral
- factors
- 바이어슈트라스
- mathematics
- t-치환
- Oxford
- Weierstrass
- 영국
- solution
- Maths
- 교육
- equation
- College
- a-level
- differential
- DENOMINATOR
- 치환
- triangle
- fractions
- GCSE
- factor
- algebraic
- 제도
- test
- 적분
- division
- Admissions
- Order
- Today
- Total
목록function (3)
Cambridge Maths Academy
Pure mathematics Year 2 Here's a short introduction to Pure maths 2 Chapter 2 Functions and graphs. 2.1 The modulus function: Understand and use the modulus function. 2.2 Functions and mappings: Understand mappings and functions, and use domain and range. 2.3 Composite functions: Combine two or more functions to make a composite function. 2.4 Inverse functions: Know how to find the inverse of a ..
수학 모음 (Maths collection) 전체보기 Question. Find $\frac{dy}{dx}$ for: $$ \begin{align} \textrm{(a)}&\qquad y = \arcsin(1-2x) \\ \textrm{(b)}&\qquad y = \arctan\left(x^2+1\right) \end{align} $$ Solution. (a) For $y=\arcsin(1-2x)$, we have $$ \begin{gather} -1\le 1-2x \le 1 \\ -\frac{\pi}{2}\le y \le\frac{\pi}{2} \end{gather} $$ We re-express the equation $$ \begin{align} y&=\arcsin(1-2x) \\ \Rightarr..
Core pure mathematics 2 Table of contents Complementary function + Particular integral An example Another example Yet another example An investigation: more general cases Exercise 7C 1. Complementary function + Particular integral Second-order differentail equations of the form $$ \begin{align} a \frac{ \textrm{d}^2y }{ \textrm{d}x^2 } + b \frac{ \textrm{d}y }{ \textrm{d}x } + c y = \textrm f(x)..