일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 |
- College
- Admissions
- t-치환
- solution
- a-level
- factors
- factor
- triangle
- DENOMINATOR
- 학년
- division
- Oxford
- differential
- Partial
- 영국
- 치환
- fractions
- 바이어슈트라스
- equation
- mathematics
- Weierstrass
- 교육
- Maths
- Order
- GCSE
- 제도
- 적분
- integral
- test
- algebraic
- Today
- Total
목록area (3)
Cambridge Maths Academy
![](http://i1.daumcdn.net/thumb/C150x150/?fname=https://blog.kakaocdn.net/dn/tXLWk/btqTqJrZPrM/Ntrcp0du3RyAHqe419unoK/img.png)
수학 모음 (Maths collection) 전체보기 To find the surface area of a circular cone, we need to consider the area of the circular sector and the area of the circle. The area of the circular sector: We find the angle $\theta$ by considering the arc length, i.e. $$ \begin{align} L=2\pi\ell\times\frac{\theta}{360}&=2\pi r \\ \Rightarrow\quad \ell\times\frac{\theta}{360}&=r \end{align} $$ The area is then $$ ..
![](http://i1.daumcdn.net/thumb/C150x150/?fname=https://blog.kakaocdn.net/dn/Suu8K/btqTp3EcM0m/D9k0eJorSVgH5FopswxMu1/img.png)
수학 모음 (Maths collection) 전체보기 1. Area of a regular octagon Question. Find the area of a regular octagon with side length $a$. (4-9 Higher GCSE by Michael White, Ch13 Geometry 4, p.426 Q19.) We consider the area of the triangle with an angle $\theta$ subtended at the centre. $$ \begin{align} \theta=\frac{360}{8}=45^\circ \end{align} $$ The height $h$ of the triangle is given by $$ \begin{align} \..
![](http://i1.daumcdn.net/thumb/C150x150/?fname=https://blog.kakaocdn.net/dn/EoKhm/btqE42c5tMk/eYHHMfbmIHNflVNUO9kPO0/img.gif)
수학 모음 (Maths collection) 전체보기 Heron's formula calculates the area of a triangle. Here, we will look at two different formulae describing the area of a triangle and then derive the third version, Heron's formula. $A=\frac12ah$ $A=\frac12ab\sin C$ Heron's formula: $A=\sqrt{s(s-a)(s-b)(s-c)}\,$ where $s=\frac{a+b+c}{2}$. s can be thought of as half the perimeter of the triangle. As we will see, the..