일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- Maths
- triangle
- 영국
- a-level
- factor
- t-치환
- College
- factors
- solution
- 제도
- 치환
- GCSE
- mathematics
- 바이어슈트라스
- Order
- 학년
- Partial
- DENOMINATOR
- test
- 교육
- differential
- division
- fractions
- algebraic
- Admissions
- integral
- Weierstrass
- equation
- Oxford
- 적분
- Today
- Total
목록Index (2)
Cambridge Maths Academy
Pure mathematics Year 1 Here's a short introduction to Pure maths 1 Chapter 1 Algebraic expressions. 1.1 Index laws: Multiply and divide integer powers. 1.2 Expanding brackets: Expand a single term over brackets and collect like terms. Expand the product of two or three expressions. 1.3 Factorising: Factorise linear, quadratic and simple cubic expressions. 1.4 Negative and fractional indices: Kn..
We have: $$ \begin{align} 1^1&=1 &&& 0^1&=0 \\ 1^0&=1 &&& 0^0&=1 \end{align} $$ Are you surprised by $0^0=1$? Proof. To prove this, we consider $$ \begin{align} y=x^x \end{align} $$ and take the limit $x\rightarrow0$. It is not straightforward to do this directly with $x^x$ so we take the (natural or any) logarithm on both sides: $$ \begin{align} \ln y=\ln x^x=x\ln x \end{align} $$ Let $x=e^{-n}..