일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- triangle
- Partial
- factors
- solution
- College
- fractions
- 교육
- a-level
- Oxford
- 바이어슈트라스
- division
- t-치환
- 영국
- 학년
- algebraic
- Maths
- differential
- 적분
- Order
- Admissions
- GCSE
- test
- DENOMINATOR
- equation
- Weierstrass
- 치환
- 제도
- mathematics
- factor
- integral
- Today
- Total
Cambridge Maths Academy
P1 §1. Algebraic expressions 본문
P1 §1. Algebraic expressions
Cambridge Maths Academy 2022. 6. 30. 05:37Pure mathematics Year 1
Here's a short introduction to Pure maths 1 Chapter 1 Algebraic expressions.
1.1 Index laws: Multiply and divide integer powers.
1.2 Expanding brackets: Expand a single term over brackets and collect like terms. Expand the product of two or three expressions.
1.3 Factorising: Factorise linear, quadratic and simple cubic expressions.
1.4 Negative and fractional indices: Know and use the laws of indices.
1.5 Surds: Simplify and use the rules of surds.
1.6 Rationalising denominators: Rationalise denominators.
1.7 Mixed exercise for chapter 1
1.8 Review exercise for chapter 1
Prior knowledge check
Q1. [GCSE Maths] Simplify:
(a) $ 4m^2n + 5mn^2 - 2m^2n + mn^2 - 3mn^2 $
(b) $ 3x^2 - 5x + 2 + 3x^2 - 7x - 12 $
Answers:
(a) $ 2m^2n + 3mn^2 $
(b) $ 6x^2 - 12x - 10 $
Q2. [GCSE Maths] Write as a single power of 2:
(a) $2^5 \times 2^3$
(b) $2^6 \div 2^2$
(c) $ \left( 2^3 \right)^2 $
Answers:
(a) $ 2^8 $
(b) $ 2^4 $
(c) $ 2^6 $
Q3. [GCSE Maths] Expand:
(a) $ 3(x + 4) $
(b) $ 5(2 - 3x) $
(c) $ 6(2x - 5y) $
Answers:
(a) $ 3x + 12 $
(b) $ 10 - 15x $
(c) $ 12x - 30y $
Q4. [GCSE Maths] Write down the highest common factor of:
(a) 24 and 16
(b) $ 6x $ and $ 8x^2 $
(c) $ 4xy^2 $ and $ 3xy $
Answers:
(a) 8.
(b) $ 2x $.
(c) $ xy $.
Q5. [GCSE Maths] Simplify:
(a) $ \frac{ 10x }{ 5 } $
(b) $ \frac{ 20x }{ 2 } $
(c) $ \frac{ 40x }{ 24 } $
Answers:
(a) $ 2x $
(b) $ 10x $
(c) $ \frac{ 5x }{ 3 } $
Comment: Computer scientists use indices to describe very large numbers. A quantum computer with 1000 qubits (quantum bits) can consider $ 2^{1000} $ values simultaneously. This is greater than the number of particles in the observable universe.
'A-level Mathematics > Pure Mathematics 1' 카테고리의 다른 글
P1 §8.2 Factorial notation and combination (n choose r, nCr) (0) | 2021.01.12 |
---|---|
P1 §8.1 Pascal's triangle (0) | 2021.01.12 |
P1 §8. The binomial expansion (0) | 2021.01.12 |
P1 §6.4 Use tangent and chord properties (0) | 2020.06.14 |
P1 §6. Circles (0) | 2020.06.14 |