일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 |
- Order
- factors
- differential
- Weierstrass
- factor
- 학년
- 교육
- College
- equation
- fractions
- Maths
- Partial
- a-level
- Oxford
- t-치환
- mathematics
- algebraic
- solution
- integral
- 적분
- DENOMINATOR
- test
- triangle
- 영국
- 치환
- GCSE
- 바이어슈트라스
- 제도
- Admissions
- division
- Today
- Total
목록Index (2)
Cambridge Maths Academy
Pure mathematics Year 1 Here's a short introduction to Pure maths 1 Chapter 1 Algebraic expressions. 1.1 Index laws: Multiply and divide integer powers. 1.2 Expanding brackets: Expand a single term over brackets and collect like terms. Expand the product of two or three expressions. 1.3 Factorising: Factorise linear, quadratic and simple cubic expressions. 1.4 Negative and fractional indices: Kn..
We have: $$ \begin{align} 1^1&=1 &&& 0^1&=0 \\ 1^0&=1 &&& 0^0&=1 \end{align} $$ Are you surprised by $0^0=1$? Proof. To prove this, we consider $$ \begin{align} y=x^x \end{align} $$ and take the limit $x\rightarrow0$. It is not straightforward to do this directly with $x^x$ so we take the (natural or any) logarithm on both sides: $$ \begin{align} \ln y=\ln x^x=x\ln x \end{align} $$ Let $x=e^{-n}..