일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- Oxford
- Maths
- Partial
- integral
- fractions
- mathematics
- a-level
- 영국
- algebraic
- College
- 적분
- 교육
- 학년
- Weierstrass
- factor
- t-치환
- 제도
- equation
- division
- solution
- test
- DENOMINATOR
- triangle
- 바이어슈트라스
- 치환
- Order
- GCSE
- Admissions
- factors
- differential
- Today
- Total
Cambridge Maths Academy
P1 §8. The binomial expansion 본문
P1 §8. The binomial expansion
Cambridge Maths Academy 2021. 1. 12. 04:30
Pure mathematics Year 1
Here's a short introduction to Pure maths 1 Chapter 8 The Binomial expansion.
8.1 Pascal's triangle: Use Pascal's triangle to identify binomial coefficients and use them to expand simple binomial expressions.
8.2 Factorial notation: Use combinations and factorial notation.
8.3 The binomial expansion: Use the binomial expansion to expand brackets.
8.4 Solving binomial problems: Find individual coefficients in a binomial expansion.
8.5 Binomial estimation: Make approximations using the binomial expansion.
8.6 Mixed exercise for chapter 8
8.7 Review exercise for chapter 8
Prior knowledge check
Q1. [P1 §1.2 Expanding brackets] Expand and simplify where possible:
(a) $ (2x-3y)^2 $
(b) $ (x-y)^3 $
(c) $ (2+x)^3 $
Answers:
(a) $ 4x^2 - 12xy - 9y^2 $
(b) $ x^3 + 3x^2y + 3xy^2 + y^3 $
(c) $ 8 + 12x + 6x^2 + x^3 $
Q2. [P1 §1.2 Expanding brackets & P1 §1.4 Negative and fractional indices] Simplify:
(a) $ (-2x)^3 $
(b) $ (3x)^{-4} $
(c) $ \left(\frac25x\right)^2 $
(d) $ \left(\frac13x\right)^{-3} $
Answers:
(a) $ -8x^3 $
(b) $ \frac1{81x^4} $
(c) $ \frac{4}{25}x^2 $
(d) $ \frac{27}{x^3} $
Q3. [P1 §1.4 Negative and fractional indices] Simplify:
(a) $ (25x)^{\frac12} $
(b) $ (64x)^{-\frac23} $
(c) $ \left(\frac9{100}x\right)^{-\frac12} $
(d) $ \left(\frac8{27}x\right)^{\frac43} $
Answers:
(a) $ 5\sqrt{x} $
(b) $ \frac1{16\sqrt[3]{x^2}} $
(c) $ \frac{10}{3\sqrt{x}} $
(d) $ \frac{16}{81}\sqrt[3]{x^4} $
Comment: The binomial expansion can be used to expand brackets raised to large powers. It can be used to simplify probability models with a large number of trials, such as those used by manufacturers to predict faults. (See P1 §8.5 Binomial estimation Exercise 8E Q9 and P1 §8.6 Mixed exercise 8 Q3.)
'A-level Mathematics > Pure Mathematics 1' 카테고리의 다른 글
P1 §1. Algebraic expressions (0) | 2022.06.30 |
---|---|
P1 §8.2 Factorial notation and combination (n choose r, nCr) (0) | 2021.01.12 |
P1 §8.1 Pascal's triangle (0) | 2021.01.12 |
P1 §6.4 Use tangent and chord properties (0) | 2020.06.14 |
P1 §6. Circles (0) | 2020.06.14 |