일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 |
Tags
- factor
- t-치환
- differential
- GCSE
- Maths
- 학년
- Admissions
- a-level
- mathematics
- fractions
- Weierstrass
- 바이어슈트라스
- algebraic
- 교육
- integral
- solution
- 치환
- test
- College
- equation
- division
- 영국
- factors
- 제도
- Oxford
- DENOMINATOR
- Order
- triangle
- Partial
- 적분
Archives
- Today
- Total
Cambridge Maths Academy
25. Zero's zeroth power is 1 (An interesting observation) 본문
수학 모음 (Maths collection)
25. Zero's zeroth power is 1 (An interesting observation)
Cambridge Maths Academy 2021. 1. 27. 05:30반응형
We have: 11=101=010=100=1 Are you surprised by 00=1?
Proof. To prove this, we consider y=xx and take the limit x→0. It is not straightforward to do this directly with xx so we take the (natural or any) logarithm on both sides:
lny=lnxx=xlnx
Let x=e−n and the limit x→0 is represented by n→∞, i.e.
limx→0xlnx=limn→∞e−nlne−n=limn→∞(−n)e−nlne⏟=1=−limn→∞nen=0⇒limx→0xx=limx→0exlnx=e0=1✓
Alternative. We may view y=lnx as:
∫1xdx=ln|x|+c⇒lnx=limα→1∫x11tαdt=limα→111−α(x1−α−1)⇒limx→0xlnx=limx→0[limα→111−α(x2−α−x)]=limα→1[limx→011−α(x2−α−x)]=0✓
Exercise. For enthusiasts, uniform convergence is assumed for switching the two limits.반응형
'수학 모음 (Maths collection)' 카테고리의 다른 글
12. Another problem on coordinate geometry (GCSE) (3) | 2021.03.02 |
---|---|
23. Equations vs. Identities (0) | 2021.01.25 |
19. Surface area of a circular cone (0) | 2021.01.14 |
18. Area of regular octagon, n-gon and circle (0) | 2021.01.06 |
17. Interest vs Tax rate (0) | 2021.01.05 |