일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- GCSE
- Admissions
- integral
- a-level
- 적분
- fractions
- Oxford
- 학년
- differential
- factor
- triangle
- Partial
- Order
- Weierstrass
- DENOMINATOR
- College
- 치환
- 바이어슈트라스
- factors
- 교육
- test
- equation
- 영국
- algebraic
- solution
- Maths
- mathematics
- 제도
- t-치환
- division
- Today
- Total
Cambridge Maths Academy
25. Zero's zeroth power is 1 (An interesting observation) 본문
25. Zero's zeroth power is 1 (An interesting observation)
Cambridge Maths Academy 2021. 1. 27. 05:30We have: $$ \begin{align} 1^1&=1 &&& 0^1&=0 \\ 1^0&=1 &&& 0^0&=1 \end{align} $$ Are you surprised by $0^0=1$?
Proof. To prove this, we consider $$ \begin{align} y=x^x \end{align} $$ and take the limit $x\rightarrow0$. It is not straightforward to do this directly with $x^x$ so we take the (natural or any) logarithm on both sides:
$$ \begin{align} \ln y=\ln x^x=x\ln x \end{align} $$
Let $x=e^{-n}$ and the limit $x\rightarrow0$ is represented by $n\rightarrow\infty$, i.e.
$$ \begin{align} &&\lim_{x\rightarrow0}x\ln x &=\lim_{n\rightarrow\infty}e^{-n}\ln e^{-n} \\ &&&=\lim_{n\rightarrow\infty}(-n)e^{-n}\underbrace{\ln e}_{=1} \\ &&&=-\lim_{n\rightarrow\infty}\frac{n}{e^n} \\ &&&=0 \\ \\ \Rightarrow&& \lim_{x\rightarrow0}x^x&=\lim_{x\rightarrow0}e^{x\ln x}=e^0=1 \quad\checkmark \end{align} $$
Alternative. We may view $y=\ln x$ as:
$$ \begin{align} && \int\frac1x\,dx&=\ln\vert x\vert+c \\ \\ \Rightarrow&& \ln x&=\lim_{\alpha\rightarrow1}\int_1^x\frac1{t^\alpha}\,dt \\ &&&=\lim_{\alpha\rightarrow1}\frac1{1-\alpha}\left(x^{1-\alpha}-1\right) \\ \\ \Rightarrow&& \lim_{x\rightarrow0}x\ln x&=\lim_{x\rightarrow0}\left[\lim_{\alpha\rightarrow1}\frac1{1-\alpha}\left(x^{2-\alpha}-x\right)\right] \\ &&&=\lim_{\alpha\rightarrow1}\left[\lim_{x\rightarrow0}\frac1{1-\alpha}\left(x^{2-\alpha}-x\right)\right] \\ &&&=0 \quad\checkmark \end{align} $$
Exercise. For enthusiasts, uniform convergence is assumed for switching the two limits.'수학 모음 (Maths collection)' 카테고리의 다른 글
12. Another problem on coordinate geometry (GCSE) (3) | 2021.03.02 |
---|---|
23. Equations vs. Identities (0) | 2021.01.25 |
19. Surface area of a circular cone (0) | 2021.01.14 |
18. Area of regular octagon, n-gon and circle (0) | 2021.01.06 |
17. Interest vs Tax rate (0) | 2021.01.05 |