일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 |
Tags
- differential
- 치환
- 제도
- equation
- Partial
- division
- integral
- algebraic
- t-치환
- 교육
- a-level
- 학년
- mathematics
- Admissions
- Maths
- 영국
- factor
- 바이어슈트라스
- Order
- GCSE
- test
- DENOMINATOR
- Oxford
- triangle
- fractions
- Weierstrass
- 적분
- factors
- College
- solution
Archives
- Today
- Total
Cambridge Maths Academy
2. A question on exponential decay (Eton College 01C_MT1 Q14) 본문
수학 모음 (Maths collection)/Technical B - Problem solving
2. A question on exponential decay (Eton College 01C_MT1 Q14)
Cambridge Maths Academy 2020. 12. 9. 02:45반응형
수학 모음 (Maths collection) 전체보기
This question comes from a test paper for A-level maths for Michaelmas Term at Eton College.
Q14. At time tt secons after the start of an experiment, the temperature of a cooling liquid is proportional to e−kte−kt.
(a) Given that the liquid's initial temperature was 80∘80∘C, find a formula for TT in terms of tt and kk. [1 mark]
(b) Given also that T=20∘T=20∘C when t=6t=6, find the exact value of kk. [2 marks]
(c) Calculate the time at which the temperature will reach 10∘10∘C, giving your answer to three significant fitures. [3 marks]
Solution. (a) Since the temperature TT is proportional to e−kte−kt, we write T∝e−kt⇒T=Ae−kt
The initial temperature was 80∘C, i.e. T=80 when t=0 and thus A=80⇒T=80e−kt.
(b) We have T=60 when t=6 which gives 60=80e−6k⇒e−6k=34⇒−6k=ln(34)⇒k=−16ln(34)=16ln(43)
(c) We want the value of t when T=10, i.e. 10=80e−kt⇒e−kt=18⇒−kt=ln(18)⇒16ln(34)t=ln(18)⇒t=6ln(18)ln(34)=43.4(3s.f.)
반응형
'수학 모음 (Maths collection) > Technical B - Problem solving' 카테고리의 다른 글
6. Probability - Jumping goldfish (GCSE) (0) | 2020.12.29 |
---|---|
5. A counting problem - Lucy & Anton in the photo (GCSE) (0) | 2020.12.29 |
4. A question on logarithms (Eton College 01C_MT1 Q16) (0) | 2020.12.09 |
3. A question on trigonometry (Eton College 01C_MT1 Q15) (0) | 2020.12.09 |
1. 헤론의 공식 유도 (A derivation of Heron's formula) (0) | 2020.06.22 |