일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- 학년
- t-치환
- 바이어슈트라스
- DENOMINATOR
- mathematics
- triangle
- test
- factors
- integral
- factor
- equation
- GCSE
- 적분
- Partial
- algebraic
- division
- a-level
- differential
- Oxford
- 치환
- Admissions
- 교육
- fractions
- Maths
- Weierstrass
- solution
- College
- 제도
- Order
- 영국
- Today
- Total
Cambridge Maths Academy
2. A question on exponential decay (Eton College 01C_MT1 Q14) 본문
2. A question on exponential decay (Eton College 01C_MT1 Q14)
Cambridge Maths Academy 2020. 12. 9. 02:45
수학 모음 (Maths collection) 전체보기
This question comes from a test paper for A-level maths for Michaelmas Term at Eton College.
Q14. At time $t$ secons after the start of an experiment, the temperature of a cooling liquid is proportional to $\textrm{e}^{-kt}$.
(a) Given that the liquid's initial temperature was $80^\circ$C, find a formula for $T$ in terms of $t$ and $k$. [1 mark]
(b) Given also that $T=20^\circ$C when $t=6$, find the exact value of $k$. [2 marks]
(c) Calculate the time at which the temperature will reach $10^\circ$C, giving your answer to three significant fitures. [3 marks]
Solution. (a) Since the temperature $T$ is proportional to $\textrm{e}^{-kt}$, we write $$ \begin{align} T&\propto \textrm{e}^{-kt} \\ \Rightarrow\quad T&=A\textrm{e}^{-kt} \end{align} $$
The initial temperature was $80^\circ$C, i.e. $T=80$ when $t=0$ and thus $$ \begin{align} A&=80 \\ \Rightarrow\quad T&=80\textrm{e}^{-kt}.\end{align} $$
(b) We have $T=60$ when $t=6$ which gives $$ \begin{align} 60&=80\textrm{e}^{-6k} \\ \Rightarrow\quad \textrm{e}^{-6k}&=\frac34 \\ \Rightarrow\quad -6k&=\ln\left(\frac34\right) \\ \Rightarrow\quad k&=-\frac16\ln\left(\frac34\right)=\frac16\ln\left(\frac43\right) \end{align} $$
(c) We want the value of $t$ when $T=10$, i.e. $$ \begin{align} 10&=80\textrm{e}^{-kt} \\ \Rightarrow\quad \textrm{e}^{-kt}&=\frac18 \\ \Rightarrow\quad -kt&=\ln\left(\frac18\right) \\ \Rightarrow\quad \frac16\ln\left(\frac34\right)t&=\ln\left(\frac18\right) \\ \Rightarrow\quad t&=\frac{6\ln\left(\frac18\right)}{\ln\left(\frac34\right)}=43.4\quad{\rm (3\;s.f.)} \end{align} $$
'수학 모음 (Maths collection) > Technical B - Problem solving' 카테고리의 다른 글
6. Probability - Jumping goldfish (GCSE) (0) | 2020.12.29 |
---|---|
5. A counting problem - Lucy & Anton in the photo (GCSE) (0) | 2020.12.29 |
4. A question on logarithms (Eton College 01C_MT1 Q16) (0) | 2020.12.09 |
3. A question on trigonometry (Eton College 01C_MT1 Q15) (0) | 2020.12.09 |
1. 헤론의 공식 유도 (A derivation of Heron's formula) (0) | 2020.06.22 |