일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- 교육
- Partial
- Admissions
- equation
- differential
- algebraic
- Oxford
- factor
- a-level
- 영국
- t-치환
- Weierstrass
- solution
- 학년
- fractions
- factors
- Order
- division
- College
- 치환
- test
- 적분
- DENOMINATOR
- 바이어슈트라스
- mathematics
- GCSE
- integral
- 제도
- triangle
- Maths
- Today
- Total
목록circular (2)
Cambridge Maths Academy
수학 모음 (Maths collection) 전체보기 This post has been partly motivated by P2 §11.6 Integration by parts CP2 §6.5 Integrating hyperbolic functions CP2 §7.1 First-order differential equations (obtaining the particular integrals using the integrating factor) Question. Derive the following results. $$ \begin{align} \textrm{(a)} &&& I_1(a,b) = \int \textrm e^{ ax } \cos b x \, \textrm dx = \frac{ \textrm ..
수학 모음 (Maths collection) 전체보기 To find the surface area of a circular cone, we need to consider the area of the circular sector and the area of the circle. The area of the circular sector: We find the angle $\theta$ by considering the arc length, i.e. $$ \begin{align} L=2\pi\ell\times\frac{\theta}{360}&=2\pi r \\ \Rightarrow\quad \ell\times\frac{\theta}{360}&=r \end{align} $$ The area is then $$ ..