일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- factors
- integral
- 바이어슈트라스
- 교육
- 영국
- solution
- Maths
- algebraic
- 학년
- a-level
- College
- Admissions
- 적분
- test
- GCSE
- equation
- Order
- fractions
- Partial
- division
- t-치환
- Oxford
- 치환
- mathematics
- 제도
- Weierstrass
- DENOMINATOR
- factor
- triangle
- differential
- Today
- Total
목록angle (2)
Cambridge Maths Academy
수학 모음 (Maths collection) 전체보기 1. Area of a regular octagon Question. Find the area of a regular octagon with side length $a$. (4-9 Higher GCSE by Michael White, Ch13 Geometry 4, p.426 Q19.) We consider the area of the triangle with an angle $\theta$ subtended at the centre. $$ \begin{align} \theta=\frac{360}{8}=45^\circ \end{align} $$ The height $h$ of the triangle is given by $$ \begin{align} \..
수학 모음 (Maths collection) 전체보기 This question comes from a test paper for A-level maths for Michaelmas Term at Eton College. Q15. (a) Express $\cos(2\theta)+\sin(2\theta)$ in the form $R\sin(2\theta+\alpha)$ where $R>0$ and $0 < \alpha < \frac{\pi}{2}$. [3 marks] (b) Hence show that $$ \begin{align} \frac{1-\sqrt{2}}{2}\le \cos\theta(\cos\theta+\sin\theta) \le\frac{1+\sqrt{2}}{2} \end{align} $$ fo..