일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 |
Tags
- factors
- 적분
- DENOMINATOR
- algebraic
- Maths
- division
- a-level
- College
- test
- 바이어슈트라스
- t-치환
- equation
- Weierstrass
- fractions
- Admissions
- factor
- 학년
- GCSE
- Oxford
- triangle
- 제도
- 치환
- solution
- 교육
- integral
- Order
- Partial
- differential
- mathematics
- 영국
Archives
- Today
- Total
목록Hessian (1)
Cambridge Maths Academy
A classification of critical points with the Hessian matrix
수학 모음 (Maths collection) 전체보기 For a function which depends on two variables $(x,y)$, $$ \textrm f = \textrm f(x,y) $$ we find the critical points by considering 2-dimensional gradient and second-order derivatives. (In 1D, the critical points are usually called the stationary points.) (i) Critical points: $$ \begin{align} \nabla \textrm f = \left( \frac{ \partial \textrm f }{ \partial x }, \frac{..
수학 모음 (Maths collection)/Technical A - Exploring ideas
2022. 4. 11. 00:25