일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 |
- Admissions
- College
- 적분
- factors
- fractions
- factor
- mathematics
- GCSE
- Partial
- DENOMINATOR
- a-level
- test
- Weierstrass
- algebraic
- 영국
- equation
- integral
- 치환
- 학년
- solution
- t-치환
- 교육
- Order
- Oxford
- 바이어슈트라스
- Maths
- 제도
- differential
- triangle
- division
- Today
- Total
Cambridge Maths Academy
15. Integration of the square-root of cot x 본문
15. Integration of the square-root of cot x
Cambridge Maths Academy 2021. 11. 24. 11:18
수학 모음 (Maths collection) 전체보기
Consider J=∫√cotxdxfor0<x≤π2(a) Method 1. By using the substitution u=√cotx, followed by partial fractions, we can show that J=12√2ln|1+√2cotx+cotx1−√2cotx+cotx|+1√2arccot(cotx−1√2cotx)+C=12√2ln|√cotx+√tanx+√2√cotx+√tanx−√2|+1√2arccot(√cotx−√tanx√2)+C
(b) Method 2. By using the substitution u=√cotx, followed by two separate substitutions z=u+1u and t=u−1u, we derive the same result as (a).
(c) Method 3. By considering J together with I=√tanx, we can show that J=1√2arcsin(sinx−cosx)−1√2arcosh(sinx+cosx)+C=1√2arcsin[√2sin(x−π4)]−1√2arcosh[√2sin(x+π4)]+C=1√2arcsin(sinx−cosx)−1√2ln(sinx+cosx+√sin2x)+C
Solution.
(a) Method 1. Substitution u=√cotx followed by partial fractions.
Step 1. Use the substitution, u=√cotx=(cotx)12(u≥0)⇒dudx=−12(cotx)−12csc2x=−1+cot2x2√cotx=−1+u42u and the integral becomes: J=−∫(√cotxdxdu)du=∫(u×−2u1+u4)du=−∫2u21+u4du
Step 2. We try to factorise the denominator. For 1+u4, we can think of the following two possibilities. (1)(1+au+u2)(1+bu+u2)=1+(a+b)u+(ab+2)u2+(a+b)u3+u4(2)(1+au−u2)(1+bu−u2)=1+(a+b)u+(ab−2)u2−(a+b)u3+u4 The linear and cubic terms require a+b=0. The quadratic term then reads (−a2±2)u2 and, for a∈R, only the positive sign is possible, i.e. we choose (1) with a=−b=√2, i.e. 1+u4=(1−√2u+u2)(1+√2u+u2) The integrand then reads by partial fractions: 2u(1−√2u+u2)(1+√2u+u2)=A+Bu1−√2u+u2+C+Du1+√2u+u2=(A+Bu)(1+√2u+u2)+(C+Du)(1−√2u+u2)(1−√2u+u2)(1+√2u+u2)=(A+C)+[√2(A−C)+(B+D)]u+[(A+C)+√2(B−D)]u2+(B+D)u3(1−√2u+u2)(1+√2u+u2) The constant and cubic terms require A+C=0 and B+D=0. The linear term then sets A=C=0 and the quadratic term gives B=−D=1√2.
Step 3. ⇒J=−∫2u(1−√2u+u2)(1+√2u+u2)du=−∫(1√2u1−√2u+u2−1√2u1+√2u+u2)du(by partial fractions)=−∫12√2(2u1−√2u+u2−2u1+√2u+u2)du=−∫12√2((−√2+2u)+√21−√2u+u2−(√2+2u)−√21+√2u+u2)du=−∫12√2(−√2+2u1−√2u+u2+√21−√2u+u2−√2+2u1+√2u+u2+√21+√2u+u2)du=−12√2(ln|1−√2u+u2|−ln|1+√2u+u2|)−∫12(11−√2u+u2+11+√2u+u2)du=12√2ln|1+√2u+u21−√2u+u2|−12∫(1(u−1√2)2+12+1(u+1√2)2+12)du=12√2ln|1+√2u+u21−√2u+u2|−12⋅√2arctan[√2(u−1√2)]−12⋅√2arctan[√2(u+1√2)]+C′=12√2ln|1+√2u+u21−√2u+u2|−1√2[arctan(√2u−1)+arctan(√2u+1)]+C′ since ∫1(x−a)2+b2dx=1barctan(x−ab)+C
Step 4. We can simplify the final expression slightly further by recalling: arctanx+arctany={arctan(x+y1−xy)+π,xy>1,x>0,y>0(y>1x)arctan(x+y1−xy)−π,xy>1,x<0,y<0(y<1x)arctan(x+y1−xy),otherwise⇒arctan(√2u−1)+arctan(√2u+1)=arctan[(√2u−1)+(√2u+1)1−(√2u−1)(√2u+1)]=arctan(√2u1−u2)⇒arctan(√2u−1)+arctan(√2u+1)={arctan(√2u1−u2)+πforu>1arctan(√2u1−u2)−πforu<−1arctan(√2u1−u2)for−1≤u≤1 which gives arctan(√2u−1)+arctan(√2u+1)=arctan(√2u1−u2)=−arccot(u2−1√2u)+(sgn(u)−12)π where, for the last step, we used arctanx={arccot(1x),x>0arccot(1x)−π,x<0 and cot(−x)=−cotx.
Finally, noting that u=√cotx≥0, we find: ⇒J=12√2ln|1+√2u+u21−√2u+u2|+1√2arccot(u2−1√2u)+(sgn(u)−12)π+C′⏟=C=12√2ln|1+√2cotx+cotx1−√2cotx+cotx|+1√2arccot(cotx−1√2cotx)+C=12√2ln|√cotx+√tanx+√2√cotx+√tanx−√2|+1√2arccot(√cotx−√tanx√2)+C◻
(b) Method 2. Substitution u=√cotx followed by two separate substitutions.
Step 1. Use the substitution, u=√cotx=(cotx)12(0<x≤π2,u≥0)⇒dudx=−12(cotx)−12csc2x=−1+cot2x2√cotx=−1+u42u and the integral becomes: J=∫(√cotxdxdu)du=∫(u×−2u1+u4)du=−∫2u21+u4du=−∫2u2+1u2du=−∫[1−1u2+1+1u2u2+1u2]du=−∫[1−1u2(u+1u)2−2+1+1u2(u−1u)2+2]du
Step 2. Use the substitutions (for u≥0): z=u+1u(z≥2),t=u−1u(t∈R)dz=(1−1u2)du,dt=(1+1u2)du The integral becomes ⇒J=−∫1z2−2dz−∫1t2+2dt=−∫1(z−√2)(z+√2)dz+1√2arccot(t√2)+C=−∫12√2(1z−√2−1z+√2)dz+1√2arccot(t√2)+C=−12√2(ln|z−√2|−ln|z+√2|)+1√2arccot(t√2)+C′=12√2ln|z+√2z−√2|+1√2arccot(t√2)+C′
since ∫1x2−a2dx=−1aarcoth(xa)+C=12aln(x−ax+a)+C(|x|>a)∫1a2−x2dx=1aartanh(xa)+C=12aln(a+xa−x)+C(−a<x<a)∫1x2+a2dx=−1aarccot(xa)+C(x∈R)
Finally, J=12√2ln|u+1u+√2u+1u−√2|+1√2arccot(u−1u√2)+C=12√2ln|√cotx+√tanx+√2√cotx+√tanx−√2|+1√2arccot(√cotx−√tanx√2)+C=12√2ln|cotx−√2cotx+1cotx+√2cotx+1|+1√2arccot(cotx−1√2cotx)+C◻
(c) Method 3. We consider the following two integrals: I=∫√tanxdx,(0≤x<π2)J=∫√cotxdx,(0<x≤π2) Now, consider I+J and I−J.
Step 1. For I+J, I+J=∫(√tanx+√cotx)dx=∫(√sinx√cosx+√cosx√sinx)dx=∫sinx+cosx√sinxcosxdx=√2∫sinx+cosx√2sinxcosxdx We note that: (sinx+cosx)2=1+2sinxcosx(sinx−cosx)2=1−2sinxcosx⇒2sinxcosx=(sinx+cosx)2−1=1−(sinx−cosx)2 and that d(sinx−cosx)=(cosx+sinx)dx, I+J can be written as: ⇒I+J=√2∫sinx+cosx√1−(sinx−cosx)2dx Use the substitution: u=sinx−cosxdu=(cosx+sinx)dx and the integral becomes: ⇒I+J=√2∫1√1−u2du=√2arcsinu+C′=√2arcsin(sinx−cosx)+C′
Step 2. For I−J, I−J=∫(√tanx−√cotx)dx=∫(√sinx√cosx−√cosx√sinx)dx=∫sinx−cosx√sinxcosxdx=√2∫sinx−cosx√2sinxcosxdx Recall: 2sinxcosx=(sinx+cosx)2−1=1−(sinx−cosx)2 and note that d(sinx+cosx)=(cosx−sinx)dx, I−J can be written as: ⇒I−J=√2∫sinx+cosx√(sinx+cosx)2−1dx Use the substitution: u=sinx+cosxdu=(cosx−sinx)dx and the integral becomes: ⇒I−J=−√2∫1√u2−1du=−√2arcoshu+C″
Step 3. We collect the results: \begin{align} I+J &= \sqrt{2} \arcsin \left( \sin x - \cos x \right) + C' \\ I-J &= - \sqrt{2} \, \textrm{arcosh}(\sin x + \cos x) + C'' = - \sqrt{2} \ln \left( \sin x + \cos x + \sqrt{ \sin 2x } \right) + C'' \end{align} and they yield: \begin{align} I = \int \sqrt{\tan x}\,\textrm{d}x &= \frac1{\sqrt{2}}\arcsin \left( \sin x - \cos x \right) - \frac1{\sqrt{2}} \textrm{arcosh} (\sin x + \cos x) + C \\ &= \frac1{\sqrt{2}}\arcsin \left[ \sqrt{2} \sin \left( x - \frac{\pi}{4} \right) \right] - \frac1{\sqrt{2}} \textrm{arcosh} \left[ \sqrt{2} \sin \left( x + \frac{\pi}{4} \right) \right] + C \\ &= \frac1{\sqrt{2}}\arcsin \left( \sin x - \cos x \right) - \frac1{\sqrt{2}} \ln \left( \sin x + \cos x + \sqrt{ \sin 2x } \right) + C \\ \\ J = \int \sqrt{\cot x}\,\textrm{d}x &= \frac1{\sqrt{2}}\arcsin \left( \sin x - \cos x \right) + \frac1{\sqrt{2}} \, \textrm{arcosh}(\sin x + \cos x) + C \\ &= \frac1{\sqrt{2}}\arcsin \left[ \sqrt{2} \sin \left( x - \frac{\pi}{4} \right) \right] + \frac1{\sqrt{2}} \, \textrm{arcosh}\left[ \sqrt{2} \sin \left( x + \frac{\pi}{4} \right) \right] + C \\ &= \frac1{\sqrt{2}}\arcsin \left( \sin x - \cos x \right) + \frac1{\sqrt{2}} \ln \left( \sin x + \cos x + \sqrt{ \sin 2x } \right) + C \qquad \square \end{align}
Aside. Together with the results for I=\int \sqrt{\tan x} \, \textrm{d}x (see here), we can make a comparison:
\begin{align} I = \int \sqrt{\tan x}\,\textrm{d}x &= \frac1{\sqrt{2}}\arcsin \left( \sin x - \cos x \right) - \frac1{\sqrt{2}} \textrm{arcosh} (\sin x + \cos x) + C \\ \\ &= \frac1{\sqrt{2}}\arcsin \left[ \sqrt{2} \sin \left( x - \frac{\pi}{4} \right) \right] - \frac1{\sqrt{2}} \textrm{arcosh} \left[ \sqrt{2} \sin \left( x + \frac{\pi}{4} \right) \right] + C \\ \\ &= \frac1{\sqrt{2}}\arcsin \left( \sin x - \cos x \right) - \frac1{\sqrt{2}} \ln \left( \sin x + \cos x + \sqrt{ \sin 2x } \right) + C \\ \\ &= \frac1{2\sqrt{2}} \ln \left\vert \frac{ \tan x - \sqrt{2 \tan x} + 1 }{ \tan x + \sqrt{2 \tan x} + 1 } \right\vert + \frac1{\sqrt{2}}\arctan \left( \frac{ \tan x - 1 }{\sqrt{2 \tan x}} \right) + C \\ \\ &= \frac1{2\sqrt{2}} \ln \left\vert \frac{ \sqrt{\tan x} + \sqrt{\cot x} - \sqrt{2} }{ \sqrt{\tan x} + \sqrt{\cot x} + \sqrt{2} } \right\vert + \frac1{\sqrt{2}}\arctan \left( \frac{\sqrt{\tan x} - \sqrt{\cot x}}{\sqrt{2}} \right) + C \\ \end{align}
\begin{align} J = \int \sqrt{\cot x}\,\textrm{d}x &= \frac1{\sqrt{2}}\arcsin \left( \sin x - \cos x \right) + \frac1{\sqrt{2}} \, \textrm{arcosh}(\sin x + \cos x) + C \\ \\ &= \frac1{\sqrt{2}}\arcsin \left[ \sqrt{2} \sin \left( x - \frac{\pi}{4} \right) \right] + \frac1{\sqrt{2}} \, \textrm{arcosh}\left[ \sqrt{2} \sin \left( x + \frac{\pi}{4} \right) \right] + C \\ \\ &= \frac1{\sqrt{2}}\arcsin \left( \sin x - \cos x \right) + \frac1{\sqrt{2}} \ln \left( \sin x + \cos x + \sqrt{ \sin 2x } \right) + C \\ \\ &= \frac1{2\sqrt{2}} \ln \left\vert \frac{ \cot x - \sqrt{2 \cot x} + 1 }{ \cot x + \sqrt{2 \cot x} + 1 } \right\vert + \frac1{\sqrt{2}}\textrm{arccot} \left( \frac{ \cot x - 1 }{\sqrt{2 \cot x}} \right) + C \\ \\ &= \frac1{2\sqrt{2}} \ln \left\vert \frac{ \sqrt{\cot x} + \sqrt{\tan x} + \sqrt{2} }{ \sqrt{\cot x} + \sqrt{\tan x} - \sqrt{2} } \right\vert + \frac1{\sqrt{2}}\textrm{arccot} \left( \frac{\sqrt{\cot x} - \sqrt{\tan x}}{\sqrt{2}} \right) + C \end{align}
'수학 모음 (Maths collection) > Technical A - Exploring ideas' 카테고리의 다른 글
A first-order differential equation with complex coefficients (0) | 2022.03.05 |
---|---|
16. Integration of powers of the sine function (Wallis integral) (0) | 2021.12.09 |
14. Integration of the square-root of tan x (0) | 2021.11.23 |
5. 쌍곡코시컨트(csch x)의 적분법 | Integration of csch x (0) | 2020.06.07 |
4. 쌍곡시컨트(sech x)의 적분법 | Integration of sech x (0) | 2020.06.07 |