일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
Tags
- Order
- Oxford
- Maths
- equation
- 적분
- Partial
- differential
- division
- triangle
- integral
- algebraic
- DENOMINATOR
- t-치환
- GCSE
- fractions
- 교육
- Weierstrass
- factors
- 치환
- mathematics
- College
- 학년
- factor
- solution
- Admissions
- 바이어슈트라스
- test
- 영국
- 제도
- a-level
Archives
- Today
- Total
목록reduction (1)
Cambridge Maths Academy
16. Integration of powers of the sine function (Wallis integral)
수학 모음 (Maths collection) 전체보기 Question. Let $$ \begin{align} I_n = \int \sin^n(ax) \, \textrm{d}x \end{align} $$ (a) Show that $$ \begin{align} I_n = -\frac1{an} \sin^{n-1}(ax) \cos(ax) + \frac{n-1}{n}I_{n-2} \end{align} $$ Let $$ \begin{align} J_n = \int_0^{\frac{\pi}{2}} \sin^nx \, \textrm{d}x \end{align} $$ (b) Hence, or otherwise, show that $$ \begin{align} J_n = \frac{n-1}{n}J_{n-2} \end{al..
수학 모음 (Maths collection)/Technical A - Exploring ideas
2021. 12. 9. 08:29