일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 |
Tags
- 바이어슈트라스
- Oxford
- 치환
- factors
- fractions
- GCSE
- Maths
- Partial
- 학년
- Weierstrass
- 영국
- factor
- algebraic
- College
- test
- DENOMINATOR
- equation
- mathematics
- a-level
- t-치환
- Order
- 제도
- 교육
- differential
- integral
- solution
- triangle
- division
- 적분
- Admissions
Archives
- Today
- Total
목록거듭제곱 (1)
Cambridge Maths Academy
16. Integration of powers of the sine function (Wallis integral)
수학 모음 (Maths collection) 전체보기 Question. Let $$ \begin{align} I_n = \int \sin^n(ax) \, \textrm{d}x \end{align} $$ (a) Show that $$ \begin{align} I_n = -\frac1{an} \sin^{n-1}(ax) \cos(ax) + \frac{n-1}{n}I_{n-2} \end{align} $$ Let $$ \begin{align} J_n = \int_0^{\frac{\pi}{2}} \sin^nx \, \textrm{d}x \end{align} $$ (b) Hence, or otherwise, show that $$ \begin{align} J_n = \frac{n-1}{n}J_{n-2} \end{al..
수학 모음 (Maths collection)/Technical A - Exploring ideas
2021. 12. 9. 08:29